×

On a nonlinear degenerate evolution equation with nonlinear boundary damping. (English) Zbl 1347.35176

Summary: This paper deals essentially with a nonlinear degenerate evolution equation of the form \(Ku''-\Delta u + \sum_{j = 1}^n b_j (\partial u' / \partial x_j) + | u|^\sigma u=0\) supplemented with nonlinear boundary conditions of Neumann type given by \(\partial u / \partial \nu + h(\cdot, u')=0\). Under suitable conditions the existence and uniqueness of solutions are shown and that the boundary damping produces a uniform global stability of the corresponding solutions.

MSC:

35L80 Degenerate hyperbolic equations
35L71 Second-order semilinear hyperbolic equations
35L20 Initial-boundary value problems for second-order hyperbolic equations
35B40 Asymptotic behavior of solutions to PDEs
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Komornik, V.; Zuazua, E., A direct method for the boundary stabilization of the wave equation, Journal de Mathématiques Pures et Appliquées, 69, 1, 33-54 (1990) · Zbl 0636.93064
[2] Milla Miranda, M.; Medeiros, L. A., On a boundary value problem for wave equations: existence uniqueness—asymptotic behavior, Revista de Matemáticas Aplicadas, 17, 2, 47-73 (1996) · Zbl 0859.35070
[3] Araruna, F. D.; Maciel, A. B., Existence and boundary stabilization of the semilinear wave equation, Nonlinear Analysis: Theory, Methods & Applications, 67, 4, 1288-1305 (2007) · Zbl 1151.35050
[4] Cavalcanti, M. M.; Domingos Cavalcanti, V. N.; Soriano, J. A.; Medeiros, L. A., On the existence and the uniform decay of a hyperbolic equation with non-linear boundary conditions, Southeast Asian Bulletin of Mathematics, 24, 2, 183-199 (2000) · Zbl 0953.35086
[5] Cavalcanti, M. M.; Domingos Cavalcanti, V. N.; Prates Filho, J. S.; Soriano, J. A., Existence and uniform decay of solutions of a degenerate equation with nonlinear boundary damping and boundary memory source term, Nonlinear Analysis, 38, 3, 281-294 (1999) · Zbl 0933.35157
[6] Cavalcanti, M. M.; Domingos Cavalcanti, V. N.; Martinez, P., Existence and decay rate estimates for the wave equation with nonlinear boundary damping and source term, Journal of Differential Equations, 203, 1, 119-158 (2004) · Zbl 1049.35047
[7] Lasiecka, I.; Tataru, D., Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping, Differential and Integral Equations, 6, 3, 507-533 (1993) · Zbl 0803.35088
[8] Milla Miranda, M.; San Gil Jutuca, L. P., Existence and boundary stabilization of solutions for the Kirchhoff equation, Communications in Partial Differential Equations, 24, 9-10, 1759-1800 (1999) · Zbl 0930.35110
[9] Lourêdo, A. T.; Miranda, M. M., Local solutions for a coupled system of Kirchhoff type, Nonlinear Analysis: Theory, Methods & Applications, 74, 18, 7094-7110 (2011) · Zbl 1230.35055
[10] Lourêdo, A. T.; Miranda, M. M., Nonlinear boundary dissipation for a coupled system of Klein-Gordon equations, Electronic Journal of Differential Equations, 120, 1-19 (2010) · Zbl 1198.35146
[11] Lourêdo, A. T.; Ferreira de Araújo, M. A.; Miranda, M. M., On a nonlinear wave equation with boundary damping, Mathematical Methods in the Applied Sciences, 37, 9, 1278-1302 (2014) · Zbl 1292.35049
[12] Park, J. Y.; Kang, J. R., Existence, uniqueness and uniform decay for the non-linear degenerate equation with memory condition at the boundary, Applied Mathematics and Computation, 202, 2, 481-488 (2008) · Zbl 1149.35061
[13] de Lima Santos, M.; Junior, F., A boundary condition with memory for Kirchhoff plates equations, Applied Mathematics and Computation, 148, 2, 475-496 (2004) · Zbl 1046.74028
[14] Pereira, D. C., Existence, uniqueness and asymptotic behavior for solutions of the nonlinear beam equation, Nonlinear Analysis: Theory, Methods & Applications, 14, 8, 613-623 (1990) · Zbl 0704.45013
[15] Lions, J.-L., Equations aux Dérivées Partielles—Interpolation, Volume I, Oeuvres choisies de Jacques-Louis Lions (2003), Paris, France: SMAI, EDP Sciences, Paris, France
[16] Strauss, W. A., On weak solutions of semilinear hyperbolic equations, Anais da Academia Brasileira de Ciências, 42, 645-651 (1970) · Zbl 0217.13104
[17] Brezis, H.; Cazenave, T., Nonlinear Evolution Equations (1994), Rio de Janeiro, Brazil: Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
[18] Marcus, M.; Mizel, V. J., Every superposition operator mapping one Sobolev space into another is continuous, Journal of Functional Analysis, 33, 2, 217-229 (1979) · Zbl 0418.46024
[19] Lions, J. L., Quelques Méthodes de Résolution des Problemes aux Limites Non Linéaires (1969), Paris, France: Dunod/Gauthier-Villars, Paris, France · Zbl 0189.40603
[20] Simon, J., Compact sets in the space \(L^p(0, T; B)\), Annali di Matematica Pura ed Applicata Série IV, 146, 65-96 (1987) · Zbl 0629.46031
[21] Medeiros, L. A.; Milla Miranda, M., Espaços de Sobolev (Iniciação aos Problemas Eliticos Não Homogêneos) (2006), Editora IM-UFRJ
[22] Lions, J. L.; Magenes, E., Problèmes aux Limites Non Homogènes et Applications, 1 (1968), Paris, France: Dunod, Paris, France · Zbl 0165.10801
[23] Nakao, M., Decay of solutions of the wave equation with a local nonlinear dissipation, Mathematische Annalen, 305, 3, 403-417 (1996) · Zbl 0856.35084
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.