zbMATH — the first resource for mathematics

Measures with maximum total exponent and generic properties of \(C^1\) expanding maps. (English) Zbl 1347.37056
Let \(M\) be a \(C^\infty\) closed manifold, and let \(C^r(M)\) be the space of \(C^r\)-maps of \(M\) endowed with the \(C^r\)-topology \((r \geq 1)\). In this paper, the authors prove that \(C^1\)-generically, every expanding map in \(C^1(M)\) has a unique invariant Borel probability measure of maximum total exponent which is fully supported and of zero entropy. Moreover, the authors show that for \(r \geq 2\), \(C^r\)-generically, every expanding map in \(C^r(M)\) does not have a fully supported measure of maximum total exponent. This generalizes the results obtained in [O. Jenkinson and I. D. Morris, Ergodic Theory Dyn. Syst. 28, No. 6, 1849–1860 (2008; Zbl 1213.37067)] on the unit circle \(S^1\).

37D20 Uniformly hyperbolic systems (expanding, Anosov, Axiom A, etc.)
37D35 Thermodynamic formalism, variational principles, equilibrium states for dynamical systems
37A05 Dynamical aspects of measure-preserving transformations
37C40 Smooth ergodic theory, invariant measures for smooth dynamical systems
Full Text: Euclid
[1] T. Bousch, La condition de Walters, Ann. Sci. École. Norrm. Sup. 34 (2001) 287-311. · Zbl 0988.37036
[2] T. Bousch and O. Jenkionson, Cohomology classes of dynamically non-negative \(C^{k}\) functions, Invent. Math. 148 (2002) 207-217. · Zbl 1079.37505
[3] R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Note in Math. 470 , Springer Verlag, Berlin-Hedelberg-New York 1975. · Zbl 0308.28010
[4] J. Brémont, Entropy and maximizing measures of generic continuous functions, C. R. Math. Acad. Sci. Paris 346 (2008) 199-201. · Zbl 1131.37005
[5] G. Contreras, A. Lopes, and Ph. Thieullen, Lyapunov minimizing measures for expanding maps of the circle, Ergod.Th. and Dynam.t Sys. 21 (2001) 1379-1409. · Zbl 0997.37016
[6] M. Denker, Ch. Grillenberger, and K. Sigmund, Ergodic theory on compact spaces, Lecture Note in Math. 527 , Springer Verlag, Berlin-Hedelberg-New York 1976. · Zbl 0328.28008
[7] O. Jenkinson, Ergodic optimization, Discrete Contin. Dyn. Syst. 15 (2006) 197-224. · Zbl 1116.37017
[8] O. Jenkinson and I. D. Morris, Lyapunov optimizing measures for \(C^{1}\) expanding maps, Ergod.Th. and Dynam. Sys. 28 (2008) 1849-1860. · Zbl 1213.37067
[9] K. R. Parthasarathy, On the category of ergodic measures, Illinois J. Math. 5 (1961) 648-656. · Zbl 0103.28101
[10] D. Ruelle, Thermodynamic formalism 2nd. ed. Cambridge Univ. Press, Cambridge 2004. · Zbl 1062.82001
[11] S. V. Savchenco, Homological inequalities for finite topological Markov chains, Funktsional. Anal. i Prilozhen 33 (1999) 91-93.
[12] K. Sigmund, Generic properties of invariant measures for Axiom A diffeomorphisms, Invent. Math. 11 (1970) 99-109. · Zbl 0193.35502
[13] M. Shub, Endomorphisms of compact differentiable manifolds, Amer. J. Math. 91 (1969) 175-199. · Zbl 0201.56305
[14] Y. Tokunaga, Lyapunov optimizing measures for \(C^{1}\) expanding maps of the \(n\)-torus, Master Dissertation of Hiroshima University 2010 (in Japanses).
[15] P. Walters, Invariant measures and equilibrium states for some mappings which expand distances, Trans. Amer. Math. Soc. 236 (1978) 121-153. · Zbl 0375.28009
[16] P. Walters, Introduction to ergodic theory, Springer Verlag, Berlin-Hedelberg-New York 1982. · Zbl 0475.28009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.