×

Takayasu cofibrations revisited. (English) Zbl 1347.55015

Summary: This short note gives a new proof for the existence of the cofibrations constructed by S. Takayasu [J. Math. Kyoto Univ. 39, No.2, 377–398 (1999; Zbl 1002.55006)], using techniques in the category of unstable modules over the mod two Steenrod algebra.

MSC:

55S10 Steenrod algebra
55T15 Adams spectral sequences
55P42 Stable homotopy theory, spectra

Citations:

Zbl 1002.55006
PDF BibTeX XML Cite
Full Text: DOI Euclid

References:

[1] G. Z. Arone and W. G. Dwyer, Partition complexes, Tits buildings and symmetric products, Proc. London Math. Soc. (3) 82 (2001), no. 1, 229-256. · Zbl 1028.55008
[2] G. Arone and M. Mahowald, The Goodwillie tower of the identity functor and the unstable periodic homotopy of spheres, Invent. Math. 135 (1999), no. 3, 743-788. · Zbl 0997.55016
[3] G. Arone, A note on the homology of \(\Sigma_{n}\), the Schwartz genus, and solving polynomial equations, in An alpine anthology of homotopy theory , Contemp. Math., 399, Amer. Math. Soc., Providence, RI, 2006, pp. 1-10. · Zbl 1098.55013
[4] M. Behrens, The Goodwillie tower and the EHP sequence, Mem. Amer. Math. Soc. 218 (2012), no. 1026, xii+90 pp. · Zbl 1330.55012
[5] D. P. Carlisle and N. J. Kuhn, Smash products of summands of \(B(\mathbf{Z}/p)^{n}_{+}\), in Algebraic topology (Evanston, IL, 1988) , 87-102, Contemp. Math., 96, Amer. Math. Soc., Providence, RI, 1989. · Zbl 0686.55009
[6] N. D. H. Hai, Generators for the mod 2 cohomology of the Steinberg summand of Thom spectra over \(B(\mathbf{Z}/2)^{n}\), J. Algebra 381 (2013), 164-175. · Zbl 1279.55010
[7] N. D. H. Hai, L. Schwartz and T. N. Nam, La fonction génératrice de Minc et une “conjecture de Segal” pour certains spectres de Thom, Adv. Math. 225 (2010), no. 3, 1431-1460. · Zbl 1200.55026
[8] J. C. Harris and R. J. Shank, Lannes’ \(T\) functor on summands of \(H^{*}(B(\mathbf{Z}/p)^{s})\), Trans. Amer. Math. Soc. 333 (1992), no. 2, 579-606.
[9] M. Inoue, \(\mathcal{A}\)-generators of the cohomology of the Steinberg summand \(M(n)\), in Recent progress in homotopy theory (Baltimore, MD, 2000) , 125-139, Contemp. Math., 293, Amer. Math. Soc., Providence, RI, 2002. · Zbl 1022.55007
[10] I. M. James, The topology of Stiefel manifolds , Cambridge Univ. Press, Cambridge, 1976. · Zbl 0337.55017
[11] J. Lannes, Sur les espaces fonctionnels dont la source est le classifiant d’un \(p\)-groupe abélien élémentaire, Inst. Hautes Études Sci. Publ. Math. 75 (1992), 135-244. · Zbl 0857.55011
[12] J. Lannes and S. Zarati, Sur les \(\mathcal{U}\)-injectifs, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 2, 303-333. · Zbl 0608.18006
[13] J. Lannes and S. Zarati, Sur les foncteurs dérivés de la déstabilisation, Math. Z. 194 (1987), no. 1, 25-59. · Zbl 0627.55014
[14] S. A. Mitchell and S. B. Priddy, Stable splittings derived from the Steinberg module, Topology 22 (1983), no. 3, 285-298. · Zbl 0526.55010
[15] L. Schwartz, Unstable modules over the Steenrod algebra and Sullivan’s fixed point set conjecture , Chicago Lectures in Mathematics, Univ. Chicago Press, Chicago, IL, 1994. · Zbl 0871.55001
[16] S. Takayasu, On stable summands of Thom spectra of \(B(\mathbf{Z}/2)^{n}\) associated to Steinberg modules, J. Math. Kyoto Univ. 39 (1999), no. 2, 377-398. · Zbl 1002.55006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.