×

Optimal design for linear models with correlated observations. (English) Zbl 1347.62161

Summary: In the common linear regression model the problem of determining optimal designs for least squares estimation is considered in the case where the observations are correlated. A necessary condition for the optimality of a given design is provided, which extends the classical equivalence theory for optimal designs in models with uncorrelated errors to the case of dependent data. If the regression functions are eigenfunctions of an integral operator defined by the covariance kernel, it is shown that the corresponding measure defines a universally optimal design. For several models universally optimal designs can be identified explicitly. In particular, it is proved that the uniform distribution is universally optimal for a class of trigonometric regression models with a broad class of covariance kernels and that the arcsine distribution is universally optimal for the polynomial regression model with correlation structure defined by the logarithmic potential. To the best knowledge of the authors these findings provide the first explicit results on optimal designs for regression models with correlated observations, which are not restricted to the location scale model.

MSC:

62K05 Optimal statistical designs
62G08 Nonparametric regression and quantile regression
62J05 Linear regression; mixed models
PDF BibTeX XML Cite
Full Text: DOI arXiv Euclid

References:

[1] Bickel, P. J. and Herzberg, A. M. (1979). Robustness of design against autocorrelation in time. I. Asymptotic theory, optimality for location and linear regression. Ann. Statist. 7 77-95. · Zbl 0403.62051
[2] Bickel, P. J., Herzberg, A. M. and Schilling, M. F. (1981). Robustness of design against autocorrelation in time. II. Optimality, theoretical and numerical results for the first-order autoregressive process. J. Amer. Statist. Assoc. 76 870-877. · Zbl 0505.62063
[3] Boltze, L. and Näther, W. (1982). On effective observation methods in regression models with correlated errors. Math. Operationsforsch. Statist. Ser. Statist. 13 507-519. · Zbl 0556.62047
[4] Dette, H., Kunert, J. and Pepelyshev, A. (2008). Exact optimal designs for weighted least squares analysis with correlated errors. Statist. Sinica 18 135-154. · Zbl 1137.62046
[5] Dette, H., Pepelyshev, A. and Zhigljavsky, A. (2008). Improving updating rules in multiplicative algorithms for computing \(D\)-optimal designs. Comput. Statist. Data Anal. 53 312-320. · Zbl 1231.62141
[6] Dette, H., Pepelyshev, A. and Holland-Letz, T. (2010). Optimal designs for random effect models with correlated errors with applications in population pharmacokinetics. Ann. Appl. Stat. 4 1430-1450. · Zbl 1202.62101
[7] Efromovich, S. (1999). Nonparametric Curve Estimation : Methods , Theory , and Applications . Springer, New York. · Zbl 0935.62039
[8] Efromovich, S. (2008). Optimal sequential design in a controlled non-parametric regression. Scand. J. Stat. 35 266-285. · Zbl 1157.62021
[9] Fahmy, M. H., Abdou, M. A. and Darwish, M. A. (1999). Integral equations and potential-theoretic type integrals of orthogonal polynomials. J. Comput. Appl. Math. 106 245-254. · Zbl 0929.45004
[10] Gradshteyn, I. S. and Ryzhik, I. M. (1965). Table of Integrals , Series , and Products . Academic Press, New York. · Zbl 0918.65002
[11] Grenander, U. (1950). Stochastic processes and statistical inference. Ark. Mat. 1 195-277. · Zbl 0058.35501
[12] Hájek, J. (1956). Linear estimation of the mean value of a stationary random process with convex correlation function. Czechoslovak Math. J. 6 94-117.
[13] Harman, R. and Štulajter, F. (2010). Optimal prediction designs in finite discrete spectrum linear regression models. Metrika 72 281-294. · Zbl 1200.62075
[14] Kanwal, R. P. (1997). Linear Integral Equations , 2nd ed. Birkhäuser, Boston, MA. · Zbl 0860.45001
[15] Kiefer, J. (1974). General equivalence theory for optimum designs (approximate theory). Ann. Statist. 2 849-879. · Zbl 0291.62093
[16] Kiefer, J. and Wolfowitz, J. (1960). The equivalence of two extremum problems. Canad. J. Math. 12 363-366. · Zbl 0093.15602
[17] Kiseľák, J. and Stehlík, M. (2008). Equidistant and \(D\)-optimal designs for parameters of Ornstein-Uhlenbeck process. Statist. Probab. Lett. 78 1388-1396. · Zbl 1152.62049
[18] Kruskal, W. (1968). When are Gauss-Markov and least squares estimators identical? A coordinate-free approach. Ann. Math. Statist. 39 70-75. · Zbl 0162.21902
[19] Mason, J. C. and Handscomb, D. C. (2003). Chebyshev Polynomials . Chapman & Hall/CRC, Boca Raton, FL. · Zbl 1015.33001
[20] Mehr, C. B. and McFadden, J. A. (1965). Certain properties of Gaussian processes and their first-passage times. J. R. Stat. Soc. Ser. B Stat. Methodol. 27 505-522. · Zbl 0234.60050
[21] Müller, W. G. and Pázman, A. (2003). Measures for designs in experiments with correlated errors. Biometrika 90 423-434. · Zbl 1035.62077
[22] Näther, W. (1985a). Effective Observation of Random Fields. Teubner-Texte zur Mathematik [ Teubner Texts in Mathematics ] 72 . Teubner, Leipzig. · Zbl 0612.62133
[23] Näther, W. (1985b). Exact design for regression models with correlated errors. Statistics 16 479-484. · Zbl 0584.62117
[24] Pázman, A. and Müller, W. G. (2001). Optimal design of experiments subject to correlated errors. Statist. Probab. Lett. 52 29-34. · Zbl 0965.62062
[25] Pukelsheim, F. (2006). Optimal Design of Experiments. Classics in Applied Mathematics 50 . SIAM, Philadelphia, PA. Reprint of the 1993 original. · Zbl 1101.62063
[26] Rao, C. R. (1967). Least squares theory using an estimated dispersion matrix and its application to measurement of signals. In Proc. Fifth Berkeley Sympos. Math. Statist. and Probability ( Berkeley , Calif. , 1965 / 66), Vol. I : Statistics 355-372. Univ. California Press, Berkeley, CA. · Zbl 0189.18503
[27] Sacks, J. and Ylvisaker, N. D. (1966). Designs for regression problems with correlated errors. Ann. Math. Statist. 37 66-89. · Zbl 0152.17503
[28] Sacks, J. and Ylvisaker, D. (1968). Designs for regression problems with correlated errors; many parameters. Ann. Math. Statist. 39 49-69. · Zbl 0165.21505
[29] Schmidt, K. M. and Zhigljavsky, A. (2009). A characterization of the arcsine distribution. Statist. Probab. Lett. 79 2451-2455. · Zbl 1176.62006
[30] Torsney, B. (1986). Moment inequalities via optimal design theory. Linear Algebra Appl. 82 237-253. · Zbl 0603.62018
[31] Tsybakov, A. B. (2009). Introduction to Nonparametric Estimation . Springer, New York. Revised and extended from the 2004 French original, Translated by Vladimir Zaiats. · Zbl 1029.62034
[32] Ucinski, D. and Atkinson, A. (2004). Experimental design for time-dependent models with correlated observations. Stud. Nonlinear Dyn. Econom. 8 13. · Zbl 1082.62514
[33] Zhigljavsky, A., Dette, H. and Pepelyshev, A. (2010). A new approach to optimal design for linear models with correlated observations. J. Amer. Statist. Assoc. 105 1093-1103. · Zbl 1390.62151
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.