Degree 12 2-adic fields with automorphism group of order 4. (English) Zbl 1348.11090

Let \({\mathbb Q}_2\) denote the field of 2-adic numbers. It is well known that for every \(n\geq1\) there are only finitely many isomorphism classes of extensions \(K/{\mathbb Q}_2\) such that \([K:{\mathbb Q}_2]=n\). The extensions of \({\mathbb Q}_2\) of degree \(n\leq11\) have been completely classified. This paper describes a method for determining the extensions \(K/{\mathbb Q}_2\) of degree 12 such that Aut\((K/{\mathbb Q}_2)\) has order 4. The authors report that there are 513 such fields. They also state that they have determined irreducible polynomials of degree 12 over \({\mathbb Q}_2\) which correspond to each of these fields, and they give numerous examples of these polynomials. Their methods allow them to compute the ramification index and discriminant for each extension \(K/{\mathbb Q}_2\), as well as the Galois group Gal\((\widetilde{K}/{\mathbb Q}_2)\) of the normal closure \(\widetilde{K}/{\mathbb Q}_2\) of \(K/{\mathbb Q}_2\).


11S15 Ramification and extension theory
11S05 Polynomials
11S20 Galois theory


Full Text: DOI Euclid


[1] Shigeru Amano, Eisenstein equations of degree \(p\) in a \({\mathfrak{ p}}\)-adic field, J. Fac. Sci. Univ. Tokyo Math. 18 (1971), 1-21. · Zbl 0231.12019
[2] Chad Awtrey, Dodecic local fields , Ph.D. thesis, Arizona State University, Tempe, 2010. · Zbl 1257.11101
[3] —-, Dodecic \(3\)-adic fields , Int. J. Num. Theor. 8 (2012), 933-944. · Zbl 1257.11101
[4] Chad Awtrey, Nicole Miles, Jonathan Milstead, Christopher R. Shill and Erin Strosnider, Degree \(14\) \(2\)-adic fields , Involve, · Zbl 1369.11077
[5] Chad Awtrey, Nicole Miles, Christopher R. Shill and Erin Strosnider, Computing Galois groups of degree \(12\) \(2\)-adic fields with trivial automorphism group , submitted. · Zbl 1357.11115
[6] Chad Awtrey and Christopher R. Shill, Galois groups of degree \(12\) \(2\)-adic fields with automorphism group of order \(6\) and \(12\) , Springer Proc. Math. Stat. 64 (2013), 55-65.
[7] The GAP Group, GAP - Groups, algorithms, and programming , Version 4.4.12, 2008.
[8] Alexander Hulpke, Techniques for the computation of Galois groups , Algor. Alg. Num. Theor., Springer, Berlin, 1999. · Zbl 0959.12003
[9] John W. Jones and David P. Roberts, Nonic \(3\)-adic fields , Algorithmic number theory , Lect. Notes Comp. Sci. 3076 , Springer, Berlin, 2004. · Zbl 1125.11356
[10] —-, A database of local fields , J. Symb. Comp. 41 (2006), 80-97. · Zbl 1140.11350
[11] —-, Octic \(2\)-adic fields , J. Num. Theor. 128 (2008), 1410-1429. · Zbl 1140.11056
[12] Marc Krasner, Nombre des extensions d’un degré donné d’un corps \(\mathfrak{p}\) -adique, Les Tendances Géom. Alg. Theor. Nombr., Paris, 1966.
[13] Serge Lang, Algebraic number theory , Second ed., Grad. Texts Math. 110 , Springer-Verlag, New York, 1994. · Zbl 0811.11001
[14] Maurizio Monge, A family of Eisenstein polynomials generating totally ramified extensions, identification of extensions and construction of class fields , · Zbl 1318.11155
[15] Peter Panayi, Computation of leopoldt’s \(p\)-adic regulator , Ph.D. thesis, University of East Anglia, December 1995.
[16] Sebastian Pauli and Xavier-François Roblot, On the computation of all extensions of a \(p\) -adic field of a given degree, Math. Comp. 70 (2001), 1641-1659 (electronic). · Zbl 0981.11038
[17] Gordon F. Royle, The transitive groups of degree twelve , J. Symb. Comp. 4 (1987), 255-268. · Zbl 0683.20002
[18] Jean-Pierre Serre, Une “formule de masse” pour les extensions totalement ramifiées de degré donné d’un corps local , C.R. Acad. Sci. 286 (1978), A1031-A1036.
[19] —-, Local fields , Grad. Texts Math. 67 , Springer-Verlag, New York, 1979.
[20] Leonard Soicher and John McKay, Computing Galois groups over the rationals , J. Num. Theor. 20 (1985), 273-281. · Zbl 0579.12006
[21] Richard P. Stauduhar, The determination of Galois groups , Math. Comp. 27 (1973), 981-996. · Zbl 0282.12004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.