zbMATH — the first resource for mathematics

A Lie product type formula in Euclidean Jordan algebras. (English) Zbl 1348.17019
Summary: In this paper, we state and prove an analog of Lie product formula in the setting of Euclidean Jordan algebras.
17C20 Simple, semisimple Jordan algebras
17C55 Finite-dimensional structures of Jordan algebras
Full Text: DOI
[1] [1] R. Bhatia, Matrix Analysis, Springer Graduate Texts in Mathematics, Springer-Verlag, New York, 1997. · Zbl 0863.15001
[2] J. Faraut and A. Korányi, Analysis on Symmetric Cones, Clarendon Press, Oxford, 1994.
[3] M.S. Gowda, Positive and doubly stochastic maps, and majorization in Euclidean Jordan algebras, Technical Report, Department of Mathematics and Statistics, University of Maryland Baltimore County, Baltimore, MD 21250, 2016.
[4] Gerd Herzog, A proof of Lie’s product formula, The American Mathematical Monthly, Vol. 121, No.3, 254-257, 2014. · Zbl 1303.15010
[5] S. Lie and F. Engel, Theorie der transformationsgruppen, 3 vols. Teubner, Leipzig, 1888.
[6] B.K. Rangarajan, Polynomial convergence of infeasible-interior-point methods over symmetric cones, SIAM J. Optim., 16, 1211-1229, 2006. · Zbl 1131.90043
[7] J.F. Sturm, Similarity and other spectral relations for symmetric cones, Linear Alg. Appl., 312, 135-154, 2000. · Zbl 0973.90093
[8] J. Tao, L. Kong, Z. Luo, and N. Xiu, Somemajorization inequalities in Euclidean Jordan algebras, Linear Alg. Appl., 461, 92-122 (2014). · Zbl 1352.17032
[9] X. Zhan, Matrix Inequalities, Springer, 2002. · Zbl 1018.15016
[10] F. Zhang, Quaternions and matrices of quaternions, Linear Alg. Appl. 251, 21-27 (1997). · Zbl 0873.15008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.