×

Controllability of fractional integrodifferential equations with state-dependent delay. (English) Zbl 1348.34131

Summary: According to fractional calculus theory and Sadovskii’s fixed point theorem, we establish sufficient conditions for the controllability of a fractional integro-differential equation with state-dependent delay. An example is provided to illustrate the theory.

MSC:

34K35 Control problems for functional-differential equations
34K37 Functional-differential equations with fractional derivatives
93B05 Controllability
34K30 Functional-differential equations in abstract spaces

References:

[1] N. Abada, M. Benchohra and H. Hammouche, Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions , J. Differ. Equat. 246 (2009), 3834-3863. · Zbl 1171.34052 · doi:10.1016/j.jde.2009.03.004
[2] R. Agarwal, B. de Andrade, and G. Siracusa, On fractional integro-differential equations with state-dependent delay , Comp. Math. Appl. 62 (2011), 1143-1149. · Zbl 1228.35262 · doi:10.1016/j.camwa.2011.02.033
[3] R.P. Agarwal, B. de Andrade and C. Cuevas, On type of periodicity and ergodicity to a class of fractional order differential equations , Adv. Diff. Equat. 2010 (2010), article ID 179750. · Zbl 1194.34007 · doi:10.1155/2010/179750
[4] M.M. Arjunan and V. Kavitha, Controllability of impulsive fractional evolution integrodifferential equations in Banach spaces , J. KSIAM 15 (2011), 177-190. · Zbl 1316.93018
[5] K. Balachandran and J.P. Dauer, Controllability of nonlinear systems in Banach spaces : A survey , J. Optim. Th. Appl. 115 (2002), 7-28. · Zbl 1023.93010 · doi:10.1023/A:1019668728098
[6] K. Balachandran and J.Y. Park, Controllability of fractional integrodifferential systems in Banach spaces , Nonlin. Anal. Hybr. Syst. 3 (2009), 363-367. · Zbl 1175.93028 · doi:10.1016/j.nahs.2009.01.014
[7] K. Balachandran, J.Y. Park and J.J. Trujillo, Controllability of nonlinear fractional dynamical systems , Nonlin. Anal. 75 (2012), 1919-1926. · Zbl 1277.34006 · doi:10.1016/j.na.2011.09.042
[8] J. Banaś and K. Goebel, Measures of noncompactness in Banach spaces , Lect. Notes Pure Appl. Math., Marcel Dekker, New York, 1980.
[9] M. Bartha, Periodic solutions for differential equations with state-dependent delay and positive feedback , Nonlin. Anal. TMA 53 (2003), 839-857. · Zbl 1028.34062 · doi:10.1016/S0362-546X(03)00039-7
[10] M. Benchohra, L. Góriewicz, S.K. Ntouyas and A. Ouahab, Controllability results for nondensely defined semilinear functional differential equations , Z. Anal. Anwend. 25 (2006), 311-325. · Zbl 1101.93007 · doi:10.4171/ZAA/1291
[11] M. Benchohra, J. Henderson, S.K. Ntouyas and A. Ouahab, Existence results for fractional functional differential inclusions with infinite delay and application to control theory , Fract. Calc. Appl. Anal. 11 (2008), 35-56. · Zbl 1149.26010
[12] M. Benchohra and S. Litimein, A global uniqueness result for abstract integral equations of Volterra type in Banach spaces , Comm. Appl. Nonlin. Anal. 18 (2011), 37-44. · Zbl 1239.45009
[13] —-, Fractional integro-differential equations with state-dependent delay on an unbounded domain , Afr. Diasp. J. Math. 12 (2011), 13-25. · Zbl 1244.34098
[14] M. Benchohra, S. Litimein, J.J. Trujillo and M.P. Velasco, Abstract fractional integro-differential equations with state-dependent delay , Int. J. Evol. Equat. 6 (2012), 25-38. · Zbl 1263.26013
[15] M. Benchohra and A. Ouahab, Controllability results for functional semilinear differential inclusions in Fréchet spaces , Nonlinear Anal. 61 (2005), 405-423. · Zbl 1086.34062 · doi:10.1016/j.na.2004.12.002
[16] Y.K. Chang and D.N. Chalishajar, Controllability of mixed Volterra-Fredholm-type integro-differential inclusions in Banach spaces , J. Franklin Inst. 345 (2008), 499-507. · Zbl 1167.93007 · doi:10.1016/j.jfranklin.2008.02.002
[17] Y.Q. Chen, H.S. Ahu and D. Xue, Robust controllability of interval fractional order linear time invariant systems , Signal Proces. 86 (2006), 2794-2802. · Zbl 1172.94386 · doi:10.1016/j.sigpro.2006.02.021
[18] J.P.C. dos Santos, C. Cuevas and B. de Andrade, Existence results for a fractional equation with state-dependent delay , Adv. Differ. Equat. 2011 (2011), article ID 642013. · Zbl 1216.45003 · doi:10.1155/2011/642013
[19] J.K. Hale and J. Kato, Phase space for retarded equations with infinite delay , Funk. Ekvac. 21 (1978), 11-41. · Zbl 0383.34055
[20] E. Hernández, A. Prokopczyk and L. Ladeira, A note on partial functional differential equations with state-dependent delay , Nonlinear Anal. RWA 7 (2006), 510-519. · Zbl 1109.34060 · doi:10.1016/j.nonrwa.2005.03.014
[21] Y. Hino, S. Murakami and T. Naito, Functional differential equations with unbounded delay , Springer-Verlag, Berlin, 1991. · Zbl 0732.34051 · doi:10.1007/BFb0084432
[22] V. Kavitha and M.M. Arjunan, Controllability of impulsive quasi-linear fractional mixed volterra-fredholm-type integrodifferential equations in Banach spaces , J. Nonlin. Sci. Appl. 4 (2011), 152-169. · Zbl 1231.93016
[23] V. Kavitha, P-Z. Wang and R. Murugesu, Existence results for neutral functional fractional differential equations with state dependent-delay , Malaya J. Math. 1 (2012), 50-61. · Zbl 1369.34102
[24] S. Kumar and N. Sukavanam, Approximate controllability of fractional order neutral control systems with delay , Int. J. Nonlin. Sci. 13 (2012), 454-462. · Zbl 1394.34166
[25] J. Liang, J.H. Liu and T.-J. Xiao, Nonlocal problems for integrodifferential equations , Dynam. Cont. Disc. Impul. Syst. 15 (2008), 815-824. · Zbl 1163.45010
[26] J. Liang and T.-J. Xiao, Semilinear integrodifferential equations with nonlocal initial conditions , Comp. Math. Appl. 47 (2004), 863-875. · Zbl 1068.45014 · doi:10.1016/S0898-1221(04)90071-5
[27] J. Liang, T.-J. Xiao and J. van Casteren, A note on semilinear abstract functional differential and integrodifferential equations with infinite delay , Appl. Math. Lett. 17 (2004), 473-477. · Zbl 1082.34543 · doi:10.1016/S0893-9659(04)90092-4
[28] Y. Liu, and D. O’Regan, Controllability of impulsive functional differential systems with nonlocal conditions , Electr. J. Differ. Equat. 194 (2013).
[29] F. Mainardi, P. Paradisi and R. Gorenflo, Probability distributions generated by fractional diffusion equations , in Econophysics : An emerging science , J. Kertesz and I. Kondor, eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000.
[30] M. Matar, Controllability of fractional semilinear mixed Volterra-Fredholm integrodifferential equations with nonlocal conditions , Int. J. Math. Anal. 4 (2010), 1105-1116. · Zbl 1205.93023
[31] D. Matignon and B. D’Andréa-Novel, Some results on controllability and observability of finite-dimensional fractional differential systems , in Proc. IMACS, IEEE SMC Conference, Lille, France, 1996, 952-956.
[32] G.M. Mophou and G.M. N’Guérékata, Existence of mild solution for some fractional differential equations with nonlocal conditions , Semigroup Forum 79 (2009), 315-322. · Zbl 1180.34006 · doi:10.1007/s00233-008-9117-x
[33] A. Pazy, Semigroups of linear operators and applications to partial differential equations , Springer-Verlag, New York, 1983. · Zbl 0516.47023
[34] I. Podlubny, Fractional differential equations , Academic press, New York, 1993.
[35] M.D. Quinn and N. Carmichael, An approach to nonlinear control problems using the fixed point methods, degree theory and pseudo-inverses , Numer. Funct. Anal. Optim. 7 (1984)-(1985), 197-219. · Zbl 0563.93013 · doi:10.1080/01630568508816189
[36] B. Sadovskii, On a fixed point principle , Funct. Anal. Appl. 2 (1967), 151-153.
[37] R. Sakthivel, R. Yong and N.I. Mahmudov, On the approximate controllability of semilinear fractional differential systems , Comp. Math. Appl. 62 (2011), 1451-1459. · Zbl 1228.34093 · doi:10.1016/j.camwa.2011.04.040
[38] A.B. Shamardan and M.R.A. Moubarak, Controllability and observability for fractional control systems , J. Fract. Calc. 15 (1999), 25-34. · Zbl 0964.93013
[39] Z. Tai and X. Wang, Controllability of fractional-order impulsive neutral functional infinite delay integrodifferential systems in Banach spaces , Appl. Math. Lett. 22 (2009), 1760-1765. · Zbl 1181.34078 · doi:10.1016/j.aml.2009.06.017
[40] J. Wang, X. Li and W. Wei, On controllability for fractional differential inclusions in Banach spaces , Opuscula Math. 32 (2012), 341-356. · Zbl 1248.34007 · doi:10.7494/OpMath.2012.32.2.341
[41] J. Wei, The controllability of fractional control systems with control delay , Comp. Math. Appl. 64 (2012), 3153-3159. · Zbl 1268.93027 · doi:10.1016/j.camwa.2012.02.065
[42] T.-J. Xiao and J. Liang, Blow-up and global existence of solutions to integral equations with infinite delay in Banach spaces , Nonlin. Anal. Theor. Meth. Appl. 71 (2009), 1442-1447.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.