×

zbMATH — the first resource for mathematics

Robust estimation for independent non-homogeneous observations using density power divergence with applications to linear regression. (English) Zbl 1349.62087
Summary: In real life we often have to deal with situations where the sampled observations are independent and share common parameters in their distribution but are not identically distributed. While the methods based on maximum likelihood provide canonical approaches for doing statistical inference in such contexts, it carries with it the usual baggage of lack of robustness to small deviations from the assumed conditions. In the present paper we develop a general estimation method for handling such situations based on a minimum distance approach which exploits the robustness properties of the density power divergence measure [A. Basu et al., Biometrika 85, No. 3, 549–559 (1998; Zbl 0926.62021)]. We establish the asymptotic properties of the proposed estimators, and illustrate the benefits of our method in case of linear regression.

MSC:
62F35 Robustness and adaptive procedures (parametric inference)
62J05 Linear regression; mixed models
PDF BibTeX XML Cite
Full Text: DOI Euclid arXiv
References:
[1] Andersen, R. (2008). Modern Methods for Robust Regression . SAGE Publications, Inc., Los Angeles, USA.
[2] Basu, A., Harris, I. R., Hjort, N. L. and Jones, M. C. (1998). Robust and efficient estimation by minimizing a density power divergence. Biometrika , 85 , 549-559. · Zbl 0926.62021
[3] Carroll, R. J. and Ruppert, D. (1985). Transformations in regression: A robust analysis. Technometrics , 27 , 1-12. · Zbl 0558.62032
[4] Durio, A. and Isaia, E. D. (2011). The minimum density power divergence approach in building robust regression models. Informatica , 22/1 , 43-56. · Zbl 1263.68129
[5] Ghosh, A. and Basu, A. (2013). Selection of the optimal robustness tuning parameter in fitting linear regression models: The density power divergence approach. Technical Report, BIRU, Indian Statistical Institute, Kolkata, India.
[6] Hampel, F. R. (1968). Contributions to the Theory of Robust Estimation . Ph.D. Thesis, University of California, Berkeley, U.S.A.
[7] Hampel, F. R. (1974). The influence curve and its role in robust estimation. J. Amer. Statist Assoc. , 69 , 383-393. · Zbl 0305.62031
[8] Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J. and Stahel, W. A. (1986). Robust Statistics: The Approach Based on Influence Functions . John Wiley & Sons, New York. · Zbl 0593.62027
[9] Huber, P. J. (1983). Minimax aspects of bounded-influence regression (with discussion). J. Amer. Statist. Assoc. , 78 , 66-80. · Zbl 0514.62073
[10] Ibragimov, I. A. and Has’minskii, R. Z. (1981). Statistical Estimation: Asymptotic Theory . Springer-Verlag, Berlin.
[11] Park, C. and Basu, A. (2004). Minimum disparity estimation: Asymptotic normality and breakdown point results. Bulletin of Informatics and Cybernetics , Special Issue in Honor of Professor Takashi Yanagawa, 36 , 19-33. · Zbl 1271.62075
[12] Rousseeuw, P. J. and Leroy, A. M. (1987). Robust Regression and Outlier Detection . John Wiley & Sons, New York. · Zbl 0711.62030
[13] Ruppert, D. and Carroll, R. J. (1980). Trimmed least squares estimation in the linear model. J. Amer. Statist. Assoc. , 75 , 828-838. · Zbl 0459.62055
[14] Simpson, D. G. (1987). Minimum Hellinger distance estimation for the analysis of count data. J. Amer. Statist. Assoc. , 82 , 802-807. · Zbl 0633.62029
[15] Warwick, J. and Jones, M. C. (2005). Choosing a robustness tuning parameter. J. Stat. Comput. Simul. , 75 , 581-588. · Zbl 1115.62317
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.