Ley, Christophe; Sabbah, Camille; Verdebout, Thomas A new concept of quantiles for directional data and the angular Mahalanobis depth. (English) Zbl 1349.62197 Electron. J. Stat. 8, No. 1, 795-816 (2014). Summary: We introduce a new concept of quantiles and depth for directional (circular and spherical) data. In view of the similarities with the classical Mahalanobis depth for multivariate data, we call it the angular Mahalanobis depth. Our unique concept combines the advantages of both the depth and quantile settings: appealing depth-based geometric properties of the contours (convexity, nestedness, rotation-equivariance) and typical quantile-asymptotics, namely we establish a Bahadur-type representation and asymptotic normality (these results are corroborated by a Monte Carlo simulation study). We introduce new user-friendly statistical tools such as directional DD- and QQ-plots and a quantile-based goodness-of-fit test. We illustrate the power of our new procedures by analyzing a cosmic rays data set. Cited in 1 ReviewCited in 17 Documents MSC: 62H11 Directional data; spatial statistics 62G30 Order statistics; empirical distribution functions 62A09 Graphical methods in statistics 62P35 Applications of statistics to physics Keywords:Bahadur representation; directional statistics; DD- and QQ-plot; Mahalanobis depth; rotationally symmetric distributions × Cite Format Result Cite Review PDF Full Text: DOI Euclid References: [1] Agostinelli, C. and Romanazzi, M. (2013). Nonparametric analysis of directional data based on data depth., Environ. Ecol. Stat. , 20 , 253-270. · Zbl 1300.62036 · doi:10.1007/s10651-012-0218-z [2] Bahadur, R. R. (1966). A note on quantiles in large samples., Ann. Math. Statist. , 37 , 577-580. · Zbl 0147.18805 · doi:10.1214/aoms/1177699450 [3] Boomsma, W., Kent, J. T., Mardia, K. V., Taylor, C. C. and Hamelryck, T. (2006). Graphical models and directional statistics capture protein structure. In S. Barber, P. D. Baxter, K. V. Mardia & R. E. Walls (Eds.), LASR 2006-Interdisciplinary Statistics and Bioinformatics , Leeds University Press, UK, 91-94. [4] Bowley, A. L. (1902)., Elements of Statistics , 2nd edition. P. S. King, London. · JFM 48.0616.06 [5] Chaudhuri, P. (1996). On a geometric notion of quantiles for multivariate data., J. Amer. Statist. Assoc. , 91 , 862-872. · Zbl 0869.62040 · doi:10.2307/2291681 [6] Efron, B. (1979). Bootstrap methods: Another look at the jackknife., Ann. Statist. , 7 , 1-26. · Zbl 0406.62024 · doi:10.1214/aos/1176344552 [7] Fisher, N. I. (1985). Spherical medians., J. Roy. Stat. Soc. B , 47 , 342-348. · Zbl 0605.62055 [8] Hallin, M., Paindaveine, D. and Siman, M. (2010). Multivariate quantiles and multiple-output regression quantiles: from \(L_1\) optimization to halfspace depth., Ann. Statist. , 38 , 635-669. · Zbl 1183.62088 · doi:10.1214/09-AOS723 [9] Hjort, N. and Pollard, D. (1993). Asymptotics for minimisers of convex processes. Unpublished manuscript, . [10] Koenker, R. (2005)., Quantile Regression , 1st edition. Cambridge University Press, New York. · Zbl 1111.62037 [11] Koenker, R. and Bassett, G. J. (1978). Regression quantiles., Econometrica , 46 , 33-50. · Zbl 0373.62038 · doi:10.2307/1913643 [12] Kong, L. and Mizera, I. (2012). Quantile tomography: Using quantiles with multivariate data., Statist. Sinica , 22 , 1589-1610. · Zbl 1359.62175 [13] Koshevoy, G. and Mosler, K. (1997). Zonoid trimming for multivariate distributions., Ann. Statist. , 25 , 1998-2017. · Zbl 0881.62059 · doi:10.1214/aos/1069362382 [14] Kreiss, J. P. (1987). On adaptive estimation in stationary ARMA processes., Ann. Statist. , 15 , 112-133. · Zbl 0616.62042 · doi:10.1214/aos/1176350256 [15] LaRiccia, V. N. (1991). Smooth goodness-of-fit tests: A quantile function approach., J. Amer. Statist. Assoc. , 86 , 427-431. · doi:10.1080/01621459.1991.10475060 [16] Le Cam, L. and Yang, G. L. (2000)., Asymptotics in Statistics , 2nd edition. Springer-Verlag, New York. · Zbl 0952.62002 [17] Lewis, T. and Fisher, N. I. (1982). Graphical methods for investigating the fit of a Fisher distribution to spherical data., Geophys. J. R. astr. Soc. , 69 , 1-13. [18] Ley, C., Swan, Y., Thiam, B. and Verdebout, T. (2013). Optimal R-estimation of a spherical location., Statist. Sinica , 23 , 305-332. · Zbl 1259.62044 [19] Li, J., Cuesta-Albertos, J. and Liu, R. Y. (2012). Dd-classifier: Nonparametric classification procedures based on dd-plots., J. Amer. Statist. Assoc. , 107 , 737-753. · Zbl 1261.62058 · doi:10.1080/01621459.2012.688462 [20] Liu, R. Y. (1990). On a notion of data depth based on random simplices., Ann. Statist. , 18 , 405-414. · Zbl 0701.62063 · doi:10.1214/aos/1176347507 [21] Liu, R. Y. (1992). Data depth and multivariate rank tests. In Y. Dodge (Ed.), L-1 Statistics and Related Methods , North-Holland, Amsterdam, 279-294. [22] Liu, R. Y., Parelius, J. M. and Singh, K. (1999). Multivariate analysis by data depth: Descriptive statistics, graphics and inference (with discussion)., Ann. Statist. , 27 , 783-858. · Zbl 0984.62037 · doi:10.1214/aos/1018031260 [23] Liu, R. Y., Serfling, R. J. and Souvaine, D. L. (Eds.) (2006)., Data Depth: Robust Multivariate Analysis, Computational Geometry and Applications . Amer. Math. Soc. · Zbl 1103.62304 [24] Liu, R. Y. and Singh, K. (1992). Ordering directional data: Concept of data depth on circles and spheres., Ann. Statist. , 20 , 1468-1484. · Zbl 0766.62027 · doi:10.1214/aos/1176348779 [25] Mardia, K. V. and Jupp, P. E. (2000)., Directional Statistics . Wiley, Chichester. · Zbl 0935.62065 [26] Moors, J. J. A. (1988). A quantile alternative for kurtosis., J. Roy. Stat. Soc. D , 37 , 25-32. [27] Mosler, K. (2013). Depth statistics. In C. Becker, R. Fried. S. Kuhnt (Eds.), Robustness and Complex Data Structures, Festschrift in Honor of Ursula Gather , Berlin, Springer, 17-34. · doi:10.1007/978-3-642-35494-6_2 [28] Purkayastha, S. (1991). A rotationally symmetric directional distribution: Obtained through maximum likelihood characterization., Sankhya Ser. A , 53 , 70-83. · Zbl 0729.62050 [29] Rousseeuw, P. J. and Hubert, M. (1999). Regression depth (with discussion)., J. Amer. Statist. Assoc. , 94 , 388-433. · Zbl 1007.62060 · doi:10.1080/01621459.1999.10474129 [30] Serfling, R. (2002). Quantile functions for multivariate analysis: Approaches and applications., Statist. Neerlandica , 56 , 214-232. Special issue: Frontier research in theoretical statistics, 2000 (Eindhoven). · Zbl 1076.62054 · doi:10.1111/1467-9574.00195 [31] Small, C. G. (1990). A survey of multidimensional medians., International Statistical Review , 58 , 263-277. [32] Toyoda, Y., Suga, K., Murakami, K., Hasegawa, H., Shibata, S., Domingo, V., Escobar, I., Kamata, K., Bradt, H., Clark, G. and La Pointe, M. (1965). Studies of primary cosmic rays in the energy region \(10^14\) eV to \(10^17\) eV (Bolivian Air Shower Joint Experiment)., Proc. Int. Conf. Cosmic Rays (London) , 2 , 708-711. [33] Tukey, J. W. (1975). Mathematics and the picturing of data. In, Proceedings of the International Congress of Mathematicians (Vancouver, B. C., 1974), Vol. 2, Canad. Math. Congress, Montreal, Quebec , 523-531. · Zbl 0347.62002 [34] Watson, G. S. (1983)., Statistics on Spheres . Wiley, New York. · Zbl 0646.62045 [35] Zuo, Y. and Serfling, R. (2000). General notions of statistical depth function., Ann. Statist. , 28 , 461-482. · Zbl 1106.62334 · doi:10.1214/aos/1016218226 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.