×

Optimal sequential change detection for fractional diffusion-type processes. (English) Zbl 1349.62368

Summary: The problem of detecting an abrupt change in the distribution of an arbitrary, sequentially observed, continuous-path stochastic process is considered and the optimality of the CUSUM test is established with respect to a modified version of Lorden’s criterion. We apply this result to the case that a random drift emerges in a fractional Brownian motion and we show that the CUSUM test optimizes Lorden’s original criterion when a fractional Brownian motion with Hurst index \(H\) adopts a polynomial drift term with exponent \(H+1/2\).

MSC:

62L10 Sequential statistical analysis
60G22 Fractional processes, including fractional Brownian motion
62L12 Sequential estimation
60G40 Stopping times; optimal stopping problems; gambling theory
60J60 Diffusion processes

Software:

longmemo

References:

[1] Basseville, M. and Nikiforov, I. V. (1993). Detection of Abrupt Changes: Theory and Application. Prentice-Hall, Engelwood Cliffs, NJ.
[2] Beibel, M. (1996). A note on Ritov’s Bayes approach to the minimax property of the cusum procedure. Ann Statist. 24, 1804-1812. · Zbl 0868.62063 · doi:10.1214/aos/1032298296
[3] Beran, J. (1994). Statistics for Long-Memory Processes. Chapman and Hall, New York. · Zbl 0869.60045
[4] Cheridito, P., Kawaguchi, H. and Maejima, M. (2003). Fractional Ornstein-Uhlenbeck processes. Electron. J. Prob. 8, 14pp. · Zbl 1065.60033 · doi:10.1214/EJP.v8-125
[5] Chronopoulou, A. and Viens, F. G. (2012). Estimation and pricing under long-memory stochastic volatility. Ann. Finance 8, 379-403. · Zbl 1298.91160 · doi:10.1007/s10436-010-0156-4
[6] Comte, F. and Renault, E. (1998). Long memory in continuous-time stochastic volatility models. Math. Finance 8, 291-323. · Zbl 1020.91021 · doi:10.1111/1467-9965.00057
[7] Decreusefond, L. and Üstünel, A. S. (1999). Stochastic analysis of the fractional Brownian motion. Potential Anal. 10, 177-214. · Zbl 0924.60034 · doi:10.1023/A:1008634027843
[8] Hadjiliadis, O. and Poor, H. V. (2008). Quickest Detection. Cambridge University Press. · Zbl 1271.62015
[9] Hawkins, D. M. and Olwell, D. H. (1998). Cumulative Sum Charts and Charting for Quality Improvement. Springer, New York. · Zbl 0990.62537
[10] Hu, Y., Nualart, D. and Song, J. (2009). Fractional martingales and characterization of the fractional Brownian motion. Ann. Prob. 37, 2404-2430. · Zbl 1196.60075 · doi:10.1214/09-AOP464
[11] Hurst, H. (1951). Long term storage capacity of reservoirs. Trans. Amer. Soc. Civil Eng. 116, 770-799.
[12] Kleptsyna, M. L. and Le Breton, A. (2002). Statistical analysis of the fractional Ornstein-Uhlenbeck type process. Statist. Infer. Stoch. Process. 5, 229-248. · Zbl 1021.62061 · doi:10.1023/A:1021220818545
[13] Kleptsyna, M. L., Le Breton, A. and Roubaud, M.-C. (2000). Parameter estimation and optimal filtering for fractional type stochastic systems. Statist. Infer. Stoch. Process. 3, 173-182. · Zbl 0966.62069 · doi:10.1023/A:1009923431187
[14] Lorden, G. (1971). Procedures for reacting to a change in distribution. Ann. Math. Statist. 42, 1897-1908. · Zbl 0255.62067 · doi:10.1214/aoms/1177693055
[15] Mishura, J. and Valkeila, E. (2011). An extension of the Lévy characterization to fractional Brownian motion. Ann. Prob. 39, 439-470. · Zbl 1227.60051 · doi:10.1214/10-AOP555
[16] Molchan, G. (1969). Gaussian processes which are asymptotically equivalent to a power of \(\lambda\). Theory Prob. Appl. 14, 530-532.
[17] Moustakides, G. V. (1986). Optimal stopping times for detecting changes in distributions. Ann. Statist. 14, 1379-1387. · Zbl 0612.62116 · doi:10.1214/aos/1176350164
[18] Moustakides, G. V. (2004). Optimality of the CUSUM procedure in continuous time. Ann. Statist. 32, 302-315. · Zbl 1105.62368 · doi:10.1214/aos/1079120138
[19] Moustakides, G. V. (2008). Sequential change detection revisited. Ann. Statist. 2, 787-807. · Zbl 1133.62063 · doi:10.1214/009053607000000938
[20] Norros, I., Valkeila, E. and Virtamo, J. (1999). An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions. Bernoulli 5, 571-587. · Zbl 0955.60034 · doi:10.2307/3318691
[21] Nualart, D. (2006). The Malliavin Calculus and Related Topics , 2nd edn. Springer, Berlin. · Zbl 1099.60003
[22] Page, E. S. (1954). Continuous inspection schemes. Biometrika 41, 100-115. · Zbl 0056.38002 · doi:10.1093/biomet/41.1-2.100
[23] Pollak, M. (1985). Optimal detection of a change in distribution. Ann. Statist. 13, 206-227. · Zbl 0573.62074 · doi:10.1214/aos/1176346587
[24] Prakasa Rao, B. L. S. (2004). Sequential estimation for fractional Ornstein-Uhlenbeck type process. Sequent. Anal. 23, 33-44. · Zbl 1103.62076 · doi:10.1081/SQA-120030193
[25] Prakasa Rao, B. L. S. (2005). Sequential testing for simple hypotheses for processes driven by fractional Brownian motion. Sequent. Anal. 24, 189-203. · Zbl 1120.62063 · doi:10.1081/SQA-200056198
[26] Revuz, D. and Yor, M. (1999). Continuous Martingales and Brownian Motion , 3rd edn. Springer, Berlin. · Zbl 0917.60006
[27] Ritov, Y. (1990). Decision theoretic optimality of the CUSUM procedure. Ann. Statist. 18, 1464-1469. · Zbl 0712.62073 · doi:10.1214/aos/1176347761
[28] Rogers, L. C. G. (1997). Arbitrage with fractional Brownian motion. Math. Finance 7, 95-105. · Zbl 0884.90045 · doi:10.1111/1467-9965.00025
[29] Shiryaev, A. N. (1978). Optimal Stopping Rules . Springer, New York. · Zbl 0391.60002
[30] Shiryaev, A. N. (1996). Minimax optimality of the method of cumulative sums (CUSUM) in the continuous time case. Russian Math. Surveys 51, 750-751. · Zbl 0882.62076 · doi:10.1070/RM1996v051n04ABEH002986
[31] Tudor, C. A. and Viens, F. G. (2007). Statistical aspects of the fractional stochastic calculus. Ann. Statist. 35, 1183-1212. · Zbl 1194.62097 · doi:10.1214/009053606000001541
[32] Young, L. C. (1936). An inequality of the Hölder type, connected with Stieltjes integration. Acta Math. 67, 251-282. · Zbl 0016.10404 · doi:10.1007/BF02401743
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.