zbMATH — the first resource for mathematics

Transcranial ultrasound of cerebral vessels in silico: proof of concept. (English) Zbl 1349.92090
Summary: Correct diagnostics of vascular pathologies underlies treatment success for patients with cerebrovascular diseases. Transcranial ultrasound is the well-known method for diagnostic of cerebrovascular diseases. Despite high sensitivity and specificity of the method, transcranial ultrasound has some limitations related to the B-mode image quality and accurate insonation of vessels of interest. Overcoming these limitations enables to enhance the quality of the diagnostic procedure. The present work addresses the numerical simulation of ultrasound propagation in a human head by a grid-characteristic method. We used a human tissue-mimicking phantom to verify our numerical model in terms of the accuracy of distance estimation. We obtained pressure distributions within a 3D segmented model of a human head. Our pilot study has some limitations, nevertheless the simulation results demonstrate that mathematical modelling of the transcranial ultrasound can be an effective tool to enhance the ultrasound examination.

92C55 Biomedical imaging and signal processing
Full Text: DOI
[1] K. A. Beklemysheva, A. A. Danilov, I. B. Petrov, V. Yu. Salamatova, Yu. V. Vassilevski, and A. V. Vasyukov, Virtual blunt injury of human thorax: Age-dependent response of vascular system. Russ.J. Numer. Anal. Math. Modelling (2015) 30, No. 5, 259-268. · Zbl 1327.74104
[2] J. Bushberg, J. Seibert, E. Leidholdt Jr., and J. Boone, The essential physics of medical imaging, Lippincott Williams & Wilkins, 2011.
[3] Catalog of human tissues phantoms. URL: .
[4] C. W. Connor, and K. Hynynen, Patterns of thermal deposition in the skull during transcranial focused ultrasound surgery. IEEE Trans. Biomed. Engrg. (2004) 51, No. 10,1693-1706.
[5] A. Danilov, Y. Ivanov, R. Pryamonosov, and Y. Vassilevski, Methods of graph network reconstruction in personalized medicine. Int.J. Numer. Method Biomed. Engrg. (2015) 32, No. 8, e02754.
[6] F.A. Duck, Physical Properties of Tissue, Academic Press, London, 1990.
[7] L. A. Frizzell, E. L. Carstensen, and J. F. Dyro, Shear properties of mammalian tissues at low megahertz frequencies. J. Acoust. Soc. Amer. (1976) 60, No. 6,1409-1411.
[8] Gammex 1430 LE phantom. URL: .
[9] S. A. Goss, R. L. Johnston, and F. Dunn, Comprehensive compilation of empirical ultrasonic properties of mammalian tissues. J. Acoust. Soc.Amer. (1978) 64, No. 2, 423-457.
[10] C. R. Hill, Generation and structure of acoustic field. In: Physical Principles of Medical Ultrasonics (Eds. C. R. Hill, J. C. Bamber, and G. R. ter Haar). John Wiley & Sons, Chichester, 2004, pp.41-68.
[11] P. R. Hoskins, Physical properties of tissues relevant to arterial ultrasound imaging and blood velocity measurement. Ultrasound Med. Biol. (2007) 33, No. 10,1527-1539.
[12] J. J. Kaufman, G. Luo, and R. S. Siffert, Ultrasound simulation in bone. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. (2008) 55, No. 6,1205-1218.
[13] N. Kazuyuki, and K. Naoyuki, 3-D Modellings of an ultrasonic phased array transducer and its radiation properties in solid. In: Ultrasonic Waves. (Ed. A. Santos). Intech, 2012, pp. 59-80.
[14] A. Kyriakou, E. Neufeld, B. Werner, G. Székely, and N. Kuster, Full-wave acoustic and thermal modellingof transcranial ultrasound propagation and investigation of skull-induced aberration correction techniques: a feasibility study. J. Ther. Ultrasound. (2015) No. 1,1-48.
[15] E. L. Madsen, H. J. Sathoff, and J. A. Zagzebski, Ultrasonic shear wave properties of soft tissues and tissuelike materials. J. Acoust. Soc. Amer. (1983) 74, No. 5,1346-1355.
[16] T. D. Mast, L. M. Hinkelman, L. A. Metlay, M. J. Orr, and R. C. Waag, Simulation of ultrasonic pulse propagation, distortion, and attenuation in the human chest wall. J. Acoust. Soc. Am. (1999) 106, No. 6, 3665-3677.
[17] C. Narasimhan, R. Ward, K. L. Kruse, M. Guddati, and G. Mahinthakumar, A high resolution computer model for sound propagation in the human thorax based on the Visible Human data set. Comput. Biol. Med. (2004) 34, No. 2,177-192.
[18] I. B. Petrov, A. V. Favorskaya, A. V. Shevtsov, A. V. Vasyukov, A. P. Potapov, and A. S. Ermakov, Combined grid characteristic method for the numerical solution of three dimensional dynamical elastoplastic problems. Comput. Math. Math. Phys. 54 (2014), No. 7,1176-1189. · Zbl 1313.74034
[19] I. B. Petrov, A. V. Vasyukov, K. A. Beklemysheva, A. S. Ermakov, A. S. Dzuba, and V. I. Golovan, Numerical modelling of low energy strike at composite stringer panel. Matem. Modelir. 26 (2014), No. 9, 96-110. (in Russian). · Zbl 1324.74015
[20] S. Pichardo, V. W. Sin, and K. Hynynen, Multi-frequency characterization of the speed of sound and attenuation coefficient for longitudinal transmission of freshly excised human skulls. Phys. Med. Biol. 56 (2011), No. 1, 219-250.
[21] J. Powers and F. Kremkau, Medical ultrasound systems. Interface focus 1 (2011), No. 4, 477-489.
[22] K. Rajamani and M. Gorman, Trancranial Doppler in stroke. Biomed. Pharmacother. 55 (2001), No. 5, 247-257.
[23] L. Rineau and M. Yvinec, A generic software design for Delaunay refinement meshing. Computational Geometry 38 (2007), 100-110. · Zbl 1114.65310
[24] G. Salahura, J. C. Tillett, L. A. Metlay, and R. C. Waag, Large-scale propagation of ultrasound in a 3-D breast model based on high-resolution MRI data. IEEE Trans. Biomed. Engrg. 57 (2010), No. 6,1273-1284.
[25] S. Sarkar, S. Ghosh, S. K. Ghosh, and A. Collier, Role of transcranial Doppler ultrasonography in stroke. Postgrad. Med.J. 83 (2007), No. 985, 683-689.
[26] Ultrasound scanner Sonomed-500. URL: .
[27] P. J. White, G. T. Clement, and K. Hynynen, Longitudinal and shear mode ultrasound propagation in human skull bone. Ultrasound Med. Biol. 32 (2006), No. 7,1085-1096.
[28] T. Whittingham and K. Martin, Transducers and beam forming. In: Diagnostic Ultrasound Physics and Equipment (Eds. P. R. Hoskins, K. Martin, A. Thrush). Cambridge University Press, 2010 pp. 23-46.
[29] P. A. Yushkevich, J. Piven, H. C. Hazlett, R. G. Smith, S. Ho, J. C. Gee, and G. Gerig, User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31 (2006), No. 3,1116-1128.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.