zbMATH — the first resource for mathematics

Denominator vectors and compatibility degrees in cluster algebras of finite type. (English) Zbl 1350.13020
Summary: We present two simple descriptions of the denominator vectors of the cluster variables of a cluster algebra of finite type, with respect to any initial cluster seed: one in terms of the compatibility degrees between almost positive roots defined by S. Fomin and A. Zelevinsky, and the other in terms of the root function of a certain subword complex. These descriptions only rely on linear algebra. They provide two simple proofs of the known fact that the \( d\)-vector of any non-initial cluster variable with respect to any initial cluster seed has non-negative entries and is different from zero.

13F60 Cluster algebras
20F55 Reflection and Coxeter groups (group-theoretic aspects)
05E15 Combinatorial aspects of groups and algebras (MSC2010)
05E45 Combinatorial aspects of simplicial complexes
Full Text: DOI arXiv
[1] Buan, Aslak Bakke; Marsh, Robert J.; Reiten, Idun, Cluster-tilted algebras, Trans. Amer. Math. Soc., 359, 1, 323-332 (electronic), (2007) · Zbl 1123.16009
[2] Caldero, Philippe; Chapoton, Fr\'ed\'eric; Schiffler, Ralf, Quivers with relations and cluster tilted algebras, Algebr. Represent. Theory, 9, 4, 359-376, (2006) · Zbl 1127.16013
[3] Ceballos, Cesar; Labb\'e, Jean-Philippe; Stump, Christian, Subword complexes, cluster complexes, and generalized multi-associahedra, J. Algebraic Combin., 39, 1, 17-51, (2014) · Zbl 1286.05180
[4] Fomin, Sergey; Zelevinsky, Andrei, Cluster algebras. I. Foundations, J. Amer. Math. Soc., 15, 2, 497-529 (electronic), (2002) · Zbl 1021.16017
[5] Fomin, Sergey; Zelevinsky, Andrei, Cluster algebras. II. Finite type classification, Invent. Math., 154, 1, 63-121, (2003) · Zbl 1054.17024
[6] Fomin, Sergey; Zelevinsky, Andrei, \(Y\)-systems and generalized associahedra, Ann. of Math. (2), 158, 3, 977-1018, (2003) · Zbl 1057.52003
[7] Berenstein, Arkady; Fomin, Sergey; Zelevinsky, Andrei, Cluster algebras. III. Upper bounds and double Bruhat cells, Duke Math. J., 126, 1, 1-52, (2005) · Zbl 1135.16013
[8] Fomin, Sergey; Zelevinsky, Andrei, Cluster algebras. IV. Coefficients, Compos. Math., 143, 1, 112-164, (2007) · Zbl 1127.16023
[9] Humphreys, James E., Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics 29, xii+204 pp., (1990), Cambridge University Press: Cambridge:Cambridge University Press · Zbl 0725.20028
[10] Keller, Bernhard, Cluster algebras and derived categories. Derived categories in algebraic geometry, EMS Ser. Congr. Rep., 123-183, (2012), Eur. Math. Soc., Z\"urich · Zbl 1299.13027
[11] Knutson, Allen; Miller, Ezra, Subword complexes in Coxeter groups, Adv. Math., 184, 1, 161-176, (2004) · Zbl 1069.20026
[12] Marsh, Robert; Reineke, Markus; Zelevinsky, Andrei, Generalized associahedra via quiver representations, Trans. Amer. Math. Soc., 355, 10, 4171-4186, (2003) · Zbl 1042.52007
[13] Pilaud, Vincent; Pocchiola, Michel, Multitriangulations, pseudotriangulations and primitive sorting networks, Discrete Comput. Geom., 48, 1, 142-191, (2012) · Zbl 1247.52012
[14] [PilaudStump-brickPolytopes] Vincent Pilaud and Christian Stump. \newblock Brick polytopes of spherical subword complexes: A new approach to generalized associahedra. \newblock Preprint, arXiv:1111.3349 (v2), 2011.
[15] Pilaud, Vincent; Santos, Francisco, The brick polytope of a sorting network, European J. Combin., 33, 4, 632-662, (2012) · Zbl 1239.52026
[16] Reading, Nathan, Clusters, Coxeter-sortable elements and noncrossing partitions, Trans. Amer. Math. Soc., 359, 12, 5931-5958, (2007) · Zbl 1189.05022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.