Fresse, Lucas Upper triangular parts of conjugacy classes of nilpotent matrices with finite number of \(B\)-orbits. (English) Zbl 1350.17006 J. Math. Soc. Japan 65, No. 3, 967-992 (2013). Summary: We consider the intersection of the conjugacy class of a nilpotent matrix with the space of upper triangular matrices. We give necessary and sufficient conditions for this intersection to be a union of finitely many orbits for the action by conjugation of the group of invertible upper triangular matrices. Cited in 4 Documents MSC: 17B08 Coadjoint orbits; nilpotent varieties 20G15 Linear algebraic groups over arbitrary fields 05E10 Combinatorial aspects of representation theory Keywords:nilpotent matrices; nilpotent orbits; spherical varieties; orbital varieties PDF BibTeX XML Cite \textit{L. Fresse}, J. Math. Soc. Japan 65, No. 3, 967--992 (2013; Zbl 1350.17006) Full Text: DOI Euclid References: [1] M. Brion, Quelques propriétés des espaces homogènes sphériques, Manuscripta Math., 55 (1986), 191-198. · Zbl 0604.14048 [2] L. Fresse, On the singularity of some special components of Springer fibers, J. Lie Theory, 21 (2011), 205-242. · Zbl 1222.14106 [3] L. Fresse and A. Melnikov, On the singularity of the irreducible components of a Springer fiber in \(\mathfrak{sl}_n\), Selecta Math. (N.S.), 16 (2010), 393-418. · Zbl 1209.14037 [4] L. Fresse and A. Melnikov, Smooth orbital varieties and orbital varieties with a dense \(B\)-orbit, Int. Math. Res. Not., 2013 (2013), 1122-1203. · Zbl 1361.17011 [5] F. Y. C. Fung, On the topology of components of some Springer fibers and their relation to Kazhdan-Lusztig theory, Adv. Math., 178 (2003), 244-276. · Zbl 1035.20004 [6] M. Gerstenhaber, On dominance and varieties of commuting matrices, Ann. of Math. (2), 73 (1961), 324-348. · Zbl 0168.28201 [7] W. H. Hesselink, A classification of the nilpotent triangular matrices, Compositio Math., 55 (1985), 89-133. · Zbl 0579.15011 [8] L. Hille and G. Röhrle, A classification of parabolic subgroups of classical groups with a finite number of orbits on the unipotent radical, Transform. Groups, 4 (1999), 35-52. · Zbl 0924.20035 [9] A. Joseph, On the variety of a highest weight module, J. Algebra, 88 (1984), 238-278. · Zbl 0539.17006 [10] A. Melnikov, Description of B-orbit closures of order 2 in upper-triangular matrices, Transform. Groups, 11 (2006), 217-247. · Zbl 1196.14040 [11] A. Melnikov, B-orbits of nilpotent order 2 and link patterns, · Zbl 1276.14068 [12] D. Mertens, Über einen Satz von Spaltenstein, University of Wuppertal, · JFM 38.0253.02 [13] D. I. Panyushev, Complexity and nilpotent orbits, Manuscripta Math., 83 (1994), 223-237. · Zbl 0822.14024 [14] R. W. Richardson, Jr., Conjugacy classes in parabolic subgroups of semisimple algebraic groups, Bull. London Math. Soc., 6 (1974), 21-24. · Zbl 0287.20036 [15] N. Spaltenstein, On the fixed point set of a unipotent element on the variety of Borel subgroups, Topology, 16 (1977), 203-204. · Zbl 0445.20021 [16] T. A. Springer, Trigonometric sums, Green functions of finite groups and representations of Weyl groups, Invent. Math., 36 (1976), 173-207. · Zbl 0374.20054 [17] T. A. Springer, A construction of representations of Weyl groups, Invent. Math., 44 (1978), 279-293. · Zbl 0376.17002 [18] R. Steinberg, On the desingularization of the unipotent variety, Invent. Math., 36 (1976), 209-224. · Zbl 0352.20035 [19] J. A. Vargas, Fixed points under the action of unipotent elements of \(\mathrm{SL}_n\) in the flag variety, Bol. Soc. Mat. Mexicana (2), 24 (1979), 1-14. · Zbl 0458.14019 [20] È. B. Vinberg, Complexity of actions of reductive groups, Funktsional. Anal. i Prilozhen., 20 (1986), 1-13. In Russian; English translation in Funct. Anal. Appl., 20 (1986), 1-11. · Zbl 0601.14038 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.