zbMATH — the first resource for mathematics

General construction of symmetric parabolic structures. (English) Zbl 1350.53068
Summary: First we introduce a generalization of symmetric spaces to parabolic geometries. We provide construction of such parabolic geometries starting with classical symmetric spaces and we show that all regular parabolic geometries with smooth systems of involutive symmetries can be obtained in this way. Further, we investigate the case of parabolic contact geometries in great detail and we provide the full classification of those with semisimple groups of symmetries without complex factors. Finally, we explicitly construct all non-trivial contact geometries with non-complex simple groups of symmetries. We also indicate geometric interpretations of some of them.

53C35 Differential geometry of symmetric spaces
53C15 General geometric structures on manifolds (almost complex, almost product structures, etc.)
53C30 Differential geometry of homogeneous manifolds
Full Text: DOI arXiv
[1] Bertram, W., The geometry of Jordan and Lie structures, Lecture notes in mathematics, vol. 1754, (2000), Springer-Verlag Berlin · Zbl 1014.17024
[2] Čap, A.; Slovak, J., Parabolic geometries. I. background and general theory, Mathematical surveys and monographs, vol. 154, (2009), American Mathematical Society Providence, RI · Zbl 1183.53002
[3] Cartan, E., Sur la geometrie pseudo-conforme des hypersurfaces de lʼespace de deux variables complexes II, Ann. scuola norm. sup. Pisa cl. sci. (2), 1, 4, 333-354, (1932) · Zbl 0005.37401
[4] Doubrov, B.; Komrakov, B.; Morimoto, T., Equivalence of holonomic differential equations, Lobachevskii J. math., 3, 39-71, (1999) · Zbl 0937.37051
[5] Hammerl, M., Homogeneous Cartan geometries, Arch. math. (Brno), 43, 5, 431-442, (2007) · Zbl 1199.53021
[6] Helgason, S., Differential geometry, Lie groups, and symmetric spaces, Pure and applied mathematics, vol. 80, (1978), Academic Press, Inc. New York, London · Zbl 0451.53038
[7] Kobayashi, S.; Nomizu, K., Foundations of differential geometry, vol. II, Interscience tracts in pure and applied mathematics, vol. 15, (1969), Interscience Publishers, John Wiley and Sons, Inc. New York, London, Sydney · Zbl 0175.48504
[8] Loos, O., Reflexion spaces of minimal and maximal torsion, Math. Z., 106, 67-72, (1968) · Zbl 0165.24902
[9] Loos, O., Spiegelungsraume und homogene symmetrische raume, Math. Z., 99, 141-170, (1967) · Zbl 0148.17403
[10] Loos, O., Symmetric spaces. I: general theory, (1969), W.A. Benjamin, Inc. New York, Amsterdam · Zbl 0175.48601
[11] Onishchik, A.L.; Vinberg, E.B., Lie groups and Lie algebras III, Mathematical sciences, vol. 41, (1994), Springer-Verlag Berlin · Zbl 0797.22001
[12] Sharpe, R.W., Differential geometry. cartanʼs generalization of kleinʼs erlangen program, Graduate texts in mathematics, vol. 166, (1997), Springer-Verlag New York · Zbl 0876.53001
[13] Zalabova, L., Parabolic symmetric spaces, Ann. global anal. geom., 37, 2, 125-141, (2010) · Zbl 1188.53026
[14] Zalabova, L., Symmetries of parabolic contact structures, J. geom. phys., 60, 11, 1698-1709, (2010) · Zbl 1197.53043
[15] Zalabova, L., Symmetries of parabolic geometries, Differential geom. appl., 27, 5, 605-622, (2009) · Zbl 1187.53036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.