×

Dynamic processes, fixed points, endpoints, asymmetric structures, and investigations related to Caristi, Nadler, and Banach in uniform spaces. (English) Zbl 1350.54021

This paper further extends a set of results whose ultimate ancestor is Banach’s contraction mapping theorem. The metric space is permitted to be a uniform space with symmetric structure defined by families of pseudo-metrics, and the map is permitted to be a set-valued contraction. New and very general results are obtained, and some of the resulting ‘fixed point’ and ‘endpoint’ theorems are used to study dissipative set-valued dynamical systems without lower semi-continuous entropies. Some of the results obtained are new even in the classical settings of metric spaces.

MSC:

54E15 Uniform structures and generalizations
37C25 Fixed points and periodic points of dynamical systems; fixed-point index theory; local dynamics
26E25 Set-valued functions
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Tataru, D., Viscosity solutions of Hamilton-Jacobi equations with unbounded nonlinear terms, Journal of Mathematical Analysis and Applications, 163, 2, 345-392 (1992) · Zbl 0757.35034
[2] Kada, O.; Suzuki, T.; Takahashi, W., Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Mathematica Japonica, 44, 2, 381-391 (1996) · Zbl 0897.54029
[3] Suzuki, T., Generalized distance and existence theorems in complete metric spaces, Journal of Mathematical Analysis and Applications, 253, 2, 440-458 (2001) · Zbl 0983.54034
[4] Lin, L.-J.; Du, W.-S., Ekeland’s variational principle, minimax theorems and existence of nonconvex equilibria in complete metric spaces, Journal of Mathematical Analysis and Applications, 323, 1, 360-370 (2006) · Zbl 1101.49022
[5] Vályi, I., A general maximality principle and a fixed point theorem in uniform space, Periodica Mathematica Hungarica, 16, 2, 127-134 (1985) · Zbl 0551.47025
[6] Włodarczyk, K.; Plebaniak, R., Maximality principle and general results of Ekeland and Caristi types without lower semicontinuity assumptions in cone uniform spaces with generalized pseudodistances, Fixed Point Theory and Applications, 2010 (2010) · Zbl 1201.54039
[7] Włodarczyk, K.; Plebaniak, R., A fixed point theorem of Subrahmanyam type in uniform spaces with generalized pseudodistances, Applied Mathematics Letters, 24, 3, 325-328 (2011) · Zbl 1206.54068
[8] Aubin, J.-P.; Siegel, J., Fixed points and stationary points of dissipative multivalued maps, Proceedings of the American Mathematical Society, 78, 3, 391-398 (1980) · Zbl 0446.47049
[9] Aubin, J.-P.; Ekeland, I., Applied Nonlinear Analysis (1984), John Wiley & Sons
[10] Aubin, J.-P.; Frankowska, H., Set-Valued Analysis (1990), Boston, Mass, USA: Birkhäuser, Boston, Mass, USA
[11] Yuan, G. X.-Z., KKM Theory and Applications in Nonlinear Analysis (1999), New York, NY, USA: Marcel Dekker, New York, NY, USA
[12] Caristi, J., Fixed point theorems for mappings satisfying inwardness conditions, Transactions of the American Mathematical Society, 215, 241-251 (1976) · Zbl 0305.47029
[13] Ekeland, I., Remarques sur les problémes variationnels, I, Comptes Rendus de l’Académie des Sciences (Paris)—Series A-B, 275, 1057-1059 (1972) · Zbl 0249.49004
[14] Ekeland, I., On the variational principle, Journal of Mathematical Analysis and Applications, 47, 2, 324-353 (1974) · Zbl 0286.49015
[15] Ekeland, I., Nonconvex minimization problems, Bulletin of the American Mathematical Society, 1, 3, 443-474 (1979) · Zbl 0441.49011
[16] Banach, S., Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fundamenta Mathematicae, 3, 1, 133-181 (1922) · JFM 48.0201.01
[17] Nadler, S. B., Multi-valued contraction mappings, Pacific Journal of Mathematics, 30, 475-488 (1969) · Zbl 0187.45002
[18] Amini-Harandi, A., Endpoints of set-valued contractions in metric spaces, Nonlinear Analysis: Theory, Methods & Applications, 72, 1, 132-134 (2010) · Zbl 1226.54042
[19] Aydi, H.; Abbas, M.; Vetro, C., Partial Hausdorff metric and Nadler’s fixed point theorem on partial metric spaces, Topology and Its Applications, 159, 14, 3234-3242 (2012) · Zbl 1252.54027
[20] de Blasi, F. S.; Myjak, J.; Reich, S.; Zaslavski, A. J., Generic existence and approximation of fixed points for nonexpansive set-valued maps, Set-Valued and Variational Analysis, 17, 1, 97-112 (2009) · Zbl 1183.47055
[21] Cirić, L., Multi-valued nonlinear contraction mappings, Nonlinear Analysis: Theory, Methods & Applications, 71, 7-8, 2716-2723 (2009) · Zbl 1179.54053
[22] Enjouji, Y.; Nakanishi, M.; Suzuki, T., A generalization of Kannan’s fixed point theorem, Fixed Point Theory and Applications, 2009 (2009) · Zbl 1179.54056
[23] Feng, Y.; Liu, S., Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings, Journal of Mathematical Analysis and Applications, 317, 1, 103-112 (2006) · Zbl 1094.47049
[24] Frigon, M., Fixed point results for multivalued maps in metric spaces with generalized inwardness conditions, Fixed Point Theory and Applications, 2010, 1-19 (2010) · Zbl 1188.54018
[25] Al-Homidan, S.; Ansari, Q. H.; Yao, J.-C., Some generalizations of Ekeland-type variational principle with applications to equilibrium problems and fixed point theory, Nonlinear Analysis: Theory, Methods & Applications, 69, 1, 126-139 (2008) · Zbl 1142.49005
[26] Jachymski, J. R., Caristi’s fixed point theorem and selections of set-valued contractions, Journal of Mathematical Analysis and Applications, 227, 1, 55-67 (1998) · Zbl 0916.47044
[27] Kaneko, H., Generalized contractive multivalued mappings and their fixed points, Mathematica Japonica, 33, 1, 57-64 (1988) · Zbl 0647.54038
[28] Kikkawa, M.; Suzuki, T., Some similarity between contractions and Kannan mappings, Fixed Point Theory and Applications, 2008 (2008) · Zbl 1162.54019
[29] Kirk, W. A., Fixed points of asymptotic contractions, Journal of Mathematical Analysis and Applications, 277, 2, 645-650 (2003) · Zbl 1022.47036
[30] Kirk, W. A.; Saliga, L. M., The Brézis-Browder order principle and extensions of Caristi’s theorem, Nonlinear Analysis: Theory, Methods & Applications, 47, 4, 2765-2778 (2001) · Zbl 1042.54506
[31] Latif, A.; Al-Mezel, S. A., Fixed point results in quasimetric spaces, Fixed Point Theory and Applications, 2011 (2011) · Zbl 1207.54061
[32] Leader, S.; Hoyle, S. L., Contractive fixed points, Fundamenta Mathematicae, 87, 93-108 (1975) · Zbl 0311.54052
[33] Mizoguchi, N.; Takahashi, W., Fixed point theorems for multivalued mappings on complete metric spaces, Journal of Mathematical Analysis and Applications, 141, 1, 177-188 (1989) · Zbl 0688.54028
[34] Nakanishi, M.; Suzuki, T., An observation on Kannan mappings, Central European Journal of Mathematics, 8, 1, 170-178 (2010) · Zbl 1186.54038
[35] Park, S., Characterizations of metric completeness, Colloquium Mathematicum, 49, 1, 21-26 (1984) · Zbl 0556.54021
[36] Pathak, H. K.; Shahzad, N., Fixed point results for set-valued contractions by altering distances in complete metric spaces, Nonlinear Analysis: Theory, Methods & Applications, 70, 7, 2634-2641 (2009) · Zbl 1158.54319
[37] Kiran, Q.; Kamran, T., Nadler’s type principle with high order of convergence, Nonlinear Analysis: Theory, Methods & Applications, 69, 11, 4106-4120 (2008) · Zbl 1220.54029
[38] Reich, S., Fixed points of contractive functions, Bollettino dell’Unione Matematica Italiana, 4, 26-42 (1972) · Zbl 0249.54026
[39] Reich, S., Some problems and results in fixed point theory, Contemporary Mathematics, 21, 179-187 (1983) · Zbl 0531.47048
[40] Reich, S.; Zaslavski, A. J., Generic existence of fixed points for set-valued mappings, Set-Valued Analysis, 10, 4, 287-296 (2002) · Zbl 1010.47029
[41] Reich, S.; Zaslavski, A. J., Genericity in Nonlinear Analysis. Genericity in Nonlinear Analysis, Developments in Mathematics, 34 (2014), New York, NY, USA: Springer, New York, NY, USA · Zbl 1296.47002
[42] Shioji, N.; Suzuki, T.; Takahashi, W., Contractive mappings, Kannan mappings and metric completeness, Proceedings of the American Mathematical Society, 126, 10, 3117-3124 (1998) · Zbl 0955.54009
[43] Sintunavarat, W.; Kumam, P., Common fixed point theorem for cyclic generalized multi-valued contraction mappings, Applied Mathematics Letters, 25, 11, 1849-1855 (2012) · Zbl 1254.54065
[44] Suzuki, T., Several fixed point theorems concerning \(\tau \)-distance, Fixed Point Theory and Applications, 3, 195-209 (2004) · Zbl 1076.54532
[45] Suzuki, T., Several fixed point theorems in complete metric spaces, Yokohama Mathematical Journal, 44, 1, 61-72 (1997) · Zbl 0882.47039
[46] Suzuki, T., Mizoguchi-Takahashi’s fixed point theorem is a real generalization of Nadler’s, Journal of Mathematical Analysis and Applications, 340, 1, 752-755 (2008) · Zbl 1137.54026
[47] Suzuki, T., Subrahmanyam’s fixed point theorem, Nonlinear Analysis: Theory, Methods & Applications, 71, 5-6, 1678-1683 (2009) · Zbl 1170.54016
[48] Suzuki, T., Convergence of the sequence of successive approximations to a fixed point, Fixed Point Theory and Applications, 2010 (2010) · Zbl 1195.54091
[49] Suzuki, T., Contractive mappings are Kannan mappings, and Kannan mappings are contractive mappings in some sense, Commentationes Mathematicae, 45, 1, 43-56 (2005) · Zbl 1098.54024
[50] Suzuki, T.; Takahashi, W., Fixed point theorems and characterizations of metric completeness, Topological Methods in Nonlinear Analysis, 8, 2, 371-382 (1996) · Zbl 0902.47050
[51] Takahashi, W.; Baillon, J. B.; Théra, M., Existence theorems generalizing fixed point theorems for multivalued mappings, Fixed Point theory Theory and Applications (Marseille, 1989). Fixed Point theory Theory and Applications (Marseille, 1989), Pitman Research Notes in Mathematics Series, 252, 397-406 (1991), Harlow, UK: Longman Sci. Tech., Harlow, UK · Zbl 0760.47029
[52] Tarafdar, E., An approach to fixed-point theorems on uniform spaces, Transactions of the American Mathematical Society, 191, 209-225 (1974) · Zbl 0287.54048
[53] Tarafdar, E.; Yuan, G. X.-Z., Set-valued topological contractions, Applied Mathematics Letters, 8, 6, 79-81 (1995) · Zbl 0837.54011
[54] Włodarczyk, K.; Plebaniak, R.; Doliński, M., Cone uniform, cone locally convex and cone metric spaces, endpoints, set-valued dynamic systems and quasi-asymptotic contractions, Nonlinear Analysis: Theory, Methods & Applications, 71, 10, 5022-5031 (2009) · Zbl 1203.54051
[55] Włodarczyk, K. W.; Plebaniak, R., Periodic point, endpoint, and convergence theorems for dissipative set-valued dynamic systems with generalized pseudodistances in cone uniform and uniform spaces, Fixed Point Theory and Applications, 2010, 1-32 (2010) · Zbl 1193.37101
[56] Włodarczyk, K.; Plebaniak, R.; Obczyński, C., Convergence theorems, best approximation and best proximity for set-valued dynamic systems of relatively quasi-asymptotic contractions in cone uniform spaces, Nonlinear Analysis: Theory, Methods & Applications, 72, 2, 794-805 (2010) · Zbl 1185.54020
[57] Włodarczyk, K.; Plebaniak, R., Quasigauge spaces with generalized quasipseudodistances and periodic points of dissipative set-valued dynamic systems, Fixed Point Theory and Applications, 2011, 1-23 (2011) · Zbl 1213.81161
[58] Włodarczyk, K.; Plebaniak, R., Kannan-type contractions and fixed pointsin uniform spaces, Fixed Point Theory and Applications, 2011, 90 (2011) · Zbl 1311.47075
[59] Włodarczyk, K.; Plebaniak, R., Contractivity of Leader type and fixed points in uniform spaces with generalized pseudodistances, Journal of Mathematical Analysis and Applications, 387, 2, 533-541 (2012) · Zbl 1233.54019
[60] Włodarczyk, K.; Plebaniak, R., Generalized uniform spaces, uniformly locally contractive set-valued dynamic systems and fixed points, Fixed Point Theory and Applications, 2012, article 104, 1-39 (2012) · Zbl 1280.54012
[61] Włodarczyk, K.; Plebaniak, R., Leader type contractions, periodic and fixed points and new completivity in quasi-gauge spaces with generalized quasi-pseudodistances, Topology and its Applications, 159, 16, 3504-3512 (2012) · Zbl 1258.47075
[62] Włodarczyk, K.; Plebaniak, R., Fixed points and endpoints of contractive set-valued maps in cone uniform spaces with generalized pseudodistances, Fixed Point Theory and Applications, 2012, article 176 (2012) · Zbl 1469.54203
[63] Włodarczyk, K.; Plebaniak, R., Contractions of Banach, Tarafdar, Meir-Keeler, Ćirić-Jachymski-Matkowski and Suzuki types and fixed points in uniform spaces with generalized pseudodistances, Journal of Mathematical Analysis and Applications, 404, 2, 338-350 (2013) · Zbl 1304.47067
[64] Włodarczyk, K.; Plebaniak, R., Asymmetric structures, discontinuous contractions and iterative approximation of fixed and periodic points, Fixed Point Theory and Applications, 2013, article 128 (2013) · Zbl 1295.41039
[65] Włodarczyk, K.; Plebaniak, R., New completeness and periodic points of discontinuous contractions of Banach-type in quasi-gauge spaces without Hausdorff property, Fixed Point Theory and Applications, 2013, article 289, 1-27 (2013) · Zbl 1295.54095
[66] Plebaniak, R., On best proximity points for set-valued contractions of Nadler type with respect to \(b\)-generalized pseudodistances in \(b\)-metric spaces, Fixed Point Theory and Applications, 2014, article 39 (2014) · Zbl 1333.54048
[67] Zhong, C.-K.; Zhu, J.; Zhao, P.-H., An extension of multi-valued contraction mappings and fixed points, Proceedings of the American Mathematical Society, 128, 8, 2439-2444 (2000) · Zbl 0948.47058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.