Generalized synchronization of nonlinear chaotic systems through natural bioinspired controlling strategy. (English) Zbl 1350.93082

Summary: A novel bioinspired control strategy design is proposed for generalized synchronization of nonlinear chaotic systems, combining the bioinspired stability theory, fuzzy modeling, and a novel, simple-form Lyapunov control function design of derived high efficient, heuristic and bioinspired controllers. Three main contributions are concluded: (1) apply the bioinspired stability theory to further analyze the stability of fuzzy error systems; the high performance of controllers has been shown in previous study by S.-Y. Li and Z.-M. Ge [Phys. Lett., A 373, No. 44, 4053–4059 (2009; Zbl 1234.34038)], (2) a new Lyapunov control function based on bioinspired stability theory is designed to achieve synchronization without using traditional LMI method, which is a simple linear homogeneous function of states and the process of designing controller to synchronize two fuzzy chaotic systems becomes much simpler, and (3) three different situations of synchronization are proposed; classical master and slave Lorenz systems, slave Chen system, and Roessler system as functional system are illustrated to further show the effectiveness and feasibility of our novel strategy. The simulation results show that our novel control strategy can be applied to different and complicated control situations with high effectiveness.


93D99 Stability of control systems
34H10 Chaos control for problems involving ordinary differential equations
93B51 Design techniques (robust design, computer-aided design, etc.)
93C10 Nonlinear systems in control theory
93C42 Fuzzy control/observation systems


Zbl 1234.34038
Full Text: DOI


[1] Pecora, L. M.; Carroll, T. L., Synchronization in chaotic systems, Physical Review Letters, 64, 8, 821-824 (1990) · Zbl 0938.37019 · doi:10.1103/PhysRevLett.64.821
[2] Paul, A. R.; Joshi, S.; Jindal, A.; Maurya, S. P.; Jain, A., Experimental studies of active and passive flow control techniques applied in a twin air-intake, The Scientific World Journal, 2013 (2013) · doi:10.1155/2013/523759
[3] Zhu, B.; Chen, Y.; Zhao, J., Integrated chassis control of active front steering and yaw stability control based on improved inverse nyquist array method, The Scientific World Journal, 2014 (2014) · doi:10.1155/2014/919847
[4] Lan, Y.; Li, Q., Chaos synchronization of a new hyperchaotic system, Applied Mathematics and Computation, 217, 5, 2125-2132 (2010) · Zbl 1204.65144 · doi:10.1016/j.amc.2010.07.011
[5] Li, S.-Y.; Yang, C.-H.; Lin, C.-T.; Ko, L.-W.; Chiu, T.-T., Adaptive synchronization of chaotic systems with unknown parameters via new backstepping strategy, Nonlinear Dynamics, 70, 3, 2129-2143 (2012) · doi:10.1007/s11071-012-0605-x
[6] Yang, H.; Wang, H.; Karimi, H. R., Robust adaptive neural backstepping control for a class of nonlinear systems with dynamic uncertainties, Abstract and Applied Analysis, 2014 (2014) · Zbl 1406.93098 · doi:10.1155/2014/658671
[7] Wu, X.; Chen, G.; Cai, J., Chaos synchronization of the master-slave generalized Lorenz systems via linear state error feedback control, Physica D: Nonlinear Phenomena, 229, 1, 52-80 (2007) · Zbl 1131.34040 · doi:10.1016/j.physd.2007.03.014
[8] Yang, X.; Peng, K.-X.; Tong, C.-N., Robust backstepping control for cold rolling main drive system with nonlinear uncertainties, Abstract and Applied Analysis, 2013 (2013) · Zbl 1291.93239 · doi:10.1155/2013/387890
[9] Ge, Z.-M.; Li, S.-Y., Yang and Yin parameters in the Lorenz system, Nonlinear Dynamics, 62, 1-2, 105-117 (2010) · Zbl 1210.34065 · doi:10.1007/s11071-010-9702-x
[10] Li, S.-Y.; Ge, Z.-M., Pragmatical adaptive synchronization of different orders chaotic systems with all uncertain parameters via nonlinear control, Nonlinear Dynamics, 64, 1-2, 77-87 (2011) · Zbl 1281.93057 · doi:10.1007/s11071-010-9847-7
[11] Li, S.-Y.; Ge, Z.-M., A novel study of parity and attractor in the time reversed Lorentz system, Physics Letters A, 373, 44, 4053-4059 (2009) · Zbl 1234.34038 · doi:10.1016/j.physleta.2009.09.004
[12] Soltanpour, M. R.; Khooban, M. H., A particle swarm optimization approach for fuzzy sliding mode control for tracking the robot manipulator, Nonlinear Dynamics, 74, 1-2, 467-478 (2013) · Zbl 1281.93067 · doi:10.1007/s11071-013-0983-8
[13] Yang, C.-H.; Ge, Z.-M.; Chang, C.-M.; Li, S.-Y., Chaos synchronization and chaos control of quantum-CNN chaotic system by variable structure control and impulse control, Nonlinear Analysis: Real World Applications, 11, 3, 1977-1985 (2010) · Zbl 1188.93022 · doi:10.1016/j.nonrwa.2009.04.019
[14] Shang, Y.; Yuan, Y.; Yuan, F., Adaptive output feedback stabilization of nonholonomic systems with nonlinear parameterization, Abstract and Applied Analysis, 2014 (2014) · Zbl 1406.93266 · doi:10.1155/2014/623605
[15] Chakraborty, K.; Jana, S.; Kar, T. K., Effort dynamics of a delay-induced prey-predator system with reserve, Nonlinear Dynamics, 70, 3, 1805-1829 (2012) · Zbl 1269.92064 · doi:10.1007/s11071-012-0575-z
[16] Jana, S.; Kar, T. K., A mathematical study of a prey-predator model in relevance to pest control, Nonlinear Dynamics, 74, 3, 667-683 (2013) · Zbl 1279.92086 · doi:10.1007/s11071-013-0996-3
[17] Ge, Z. M.; Wong, Y. T.; Li, S.-Y., Temporary lag and anticipated synchronization and anti-synchronization of uncoupled time-delayed chaotic systems, Journal of Sound and Vibration, 318, 1-2, 267-278 (2008) · doi:10.1016/j.jsv.2008.03.062
[18] Xu, S. S. D., Super-twisting-algorithm-based terminal sliding mode control for a bioreactor system, Abstract and Applied Analysis, 2014 (2014) · Zbl 1470.93043 · doi:10.1155/2014/495680
[19] Zu, Y. G.; Zhao, Z. H.; Yu, J. H.; Yang, F. J., Non-Linear Ecological Modelling (2004), Beijing, China: Science Press, Beijing, China
[20] Mukhopadhyay, B.; Bhattacharyya, R., Analysis of a virus-immune system model with two distinct delays, Nonlinear Studies, 15, 1, 37-50 (2008) · Zbl 1157.34061
[21] El-Gohary, A.; Al-Ruzaiza, A. S., Chaos and adaptive control in two prey, one predator system with nonlinear feedback, Chaos, Solitons & Fractals, 34, 2, 443-453 (2007) · Zbl 1127.92040 · doi:10.1016/j.chaos.2006.03.101
[22] Khasawneh, F. A.; Barton, D. A.; Mann, B. P., Periodic solutions of nonlinear delay differential equations using spectral element method, Nonlinear Dynamics, 67, 1, 641-658 (2012) · Zbl 1246.65102 · doi:10.1007/s11071-011-0017-3
[23] Ghosh, D., Projective-dual synchronization in delay dynamical systems with time-varying coupling delay, Nonlinear Dynamics, 66, 4, 717-730 (2011) · Zbl 1242.93055 · doi:10.1007/s11071-011-9945-1
[24] Chamgoué, A. C.; Yamapi, R.; Woafo, P., Bifurcations in a birhythmic biological system with time-delayed noise, Nonlinear Dynamics, 73, 4, 2157-2173 (2013) · doi:10.1007/s11071-013-0931-7
[25] Perelson, A. S., Modelling viral and immune system dynamics, Nature Reviews Immunology, 2, 1, 28-36 (2002) · doi:10.1038/nri700
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.