Bilinear integration and applications to operator and scattering theory. (English) Zbl 1351.28003

The author studies the integration of operator valued functions with respect to a spectral or orthogonally scattered measure, and many examples are given to illustrate the results. In particular, a simple version of Fubini’s theorem in the operator context is given in Theorem 2.3; Proposition 3.4 considers the problem of approximation by operator valued simple functions; Theorem 3.5 characterizes Pettis’ measurability, and Theorem 3.7 gives several characterizations, in the case of a finite measure space \((\Omega,\mu)\) and for Banach spaces \(X\) (which is separable) and \(Y\), of when \(f\rightarrow {\mathcal L}_s(X,Y)\) is strongly \(\mu\)-measurable. Finally, it is proved in Theorem 4.5 (among other results) that if \(\mathcal H\) is a separable Hilbert space, \(A: {\mathcal D}(A) \rightarrow {\mathcal H}\) is a selfadjoint operator with spectral measure \(P_A\), \(E={\mathcal L}({\mathcal D}(A),{\mathcal H})\widehat\otimes_\tau{\mathcal D}(A)\), \((\Gamma,{\mathcal E},\mu)\) is a \(\sigma\)-finite measure space, \(u:\mathbb R\times \Gamma\rightarrow\mathbb C\) has the property that, for every \(h\in{\mathcal D}(A)\), the function \(u(\cdot,\gamma)\) is \(P_Ah\)-integrable in \({\mathcal D}(A)\) and \(f:\Gamma\rightarrow {\mathcal L}({\mathcal D}(A),{\mathcal H})\) is a suitable strongly \(\mu\)-measurable function, then the \({\mathcal L}({\mathcal D}(A),{\mathcal H})\)-valued function \[ \sigma\rightarrow\int_Tu(\sigma,\gamma)f(\gamma)d\mu(\gamma),\qquad\sigma\in\mathbb R \] is strongly measurable in \({\mathcal L}({\mathcal D}(A),{\mathcal H})\) and \((P_Ah)\)-integrable in \(E\) with respect to the \({\mathcal D}(A)\)-valued measure \(P_Ah\), for each set \(T\in{\mathcal E}\).


28A25 Integration with respect to measures and other set functions
46A32 Spaces of linear operators; topological tensor products; approximation properties
46N50 Applications of functional analysis in quantum physics
Full Text: DOI Euclid


[1] W.O. Amrein, V. Georgescu and J.M. Jauch, Stationary state scattering theory , Helv. Phys. Acta. 44 (1971), 407-434.
[2] R. Bartle, A general bilinear vector integral , Stud. Math. 15 (1956), 337-351. · Zbl 0070.28102
[3] O. Blasco and J. van Neerven, Spaces of operator-valued functions measurable with respect to the strong operator topology , in Vector measures, integration and related topics , Oper. Th. Adv. Appl. 201 , Birkhäuser Verlag, Basel, 2010. · Zbl 1259.46033
[4] G.Y.H. Chi, On the Radon-Nikodym theorem in locally convex spaces , in Measure theory , Lect. Notes Math. 541 , Springer, Berlin, 1976. · Zbl 0335.46029
[5] J. Diestel and J.J. Uhl Jr., Vector measures , Math. Surv. 15 , American Mathematical Society, Providence, 1977.
[6] N. Dinculeanu, Vector measures , Inter. Mono. Pure Appl. Math. 95 , Pergamon Press, Oxford, 1967. · Zbl 0142.10502
[7] I. Dobrakov, On integration in Banach spaces I, Czech. Math. J. 20 (1970), 511-536. · Zbl 0215.20103
[8] —-, On integration in Banach spaces II, Czech. Math. J. 20 (1970), 680-695. · Zbl 0224.46050
[9] L. Garcia-Raffi and B. Jefferies, An application of bilinear integration to quantum scattering , J. Math. Anal. Appl. 415 (2014), 394-421. · Zbl 1308.81167
[10] B. Jefferies, Some recent applications of bilinear integration , in Vector measures, integration and related topics , Oper. Th. Adv. Appl. 201 , Birkhäuser Verlag, Basel, 2010. · Zbl 1248.28015
[11] —-, Lattice trace operators , J. Operators 2014 , article ID 629502.
[12] —-, The CLR inequality for dominated semigroups, Math. Phys. Anal. Geom., doi 10.1007/ s11040-014-9145-6, 2014. · Zbl 1359.47040
[13] B. Jefferies and S. Okada, Bilinear integration in tensor products , Rocky Mountain J. Math. 28 (1998), 517-545. · Zbl 0936.46035
[14] B. Jefferies and P. Rothnie, Bilinear integration with positive vector measures , J. Aust. Math. Soc. 75 (2003), 279-293. · Zbl 1048.28008
[15] G. Köthe, Topological vector spaces I, Springer-Verlag, Berlin, 1969.
[16] —-, Topological vector spaces II, Springer-Verlag, Berlin, 1979. · Zbl 0417.46001
[17] G.L. Litvinov, Nuclear operators , Encycl. Math., M. Hazewinkel, ed., Springer, New York, 2001.
[18] S. Okada, W. Ricker and E. Sánchez Pérez, Optimal domain and integral extension of operators. Acting in function spaces , Oper. Th.: Adv. Appl. 180 , Birkhauser Verlag, Basel, 2008.
[19] W. Rudin, Functional analysis , McGraw-Hill, New York, 1973. · Zbl 0253.46001
[20] E. Saab, On the Radon-Nikodym property in a class of locally convex spaces , Pac. J. Math. 75 (1978) 281-291. · Zbl 0374.46002
[21] W. Schachermayer, Integral operators on \(L^{p}\) spaces I, II, Indiana Univ. Math. J. 30 (1981), 123-140, 261-266; Addendum to: Integral operators on \(L^{p}\) spaces , Indiana Univ. Math. J. 31 (1982), 73-81. · Zbl 0422.47012
[22] H. Schaefer, Topological vector spaces , Grad. Texts Math. 3 , Springer-Verlag, Berlin, 1980. · Zbl 0212.14001
[23] L. Schwartz, Radon measures in arbitrary topological spaces and cylindrical measures , Tata Inst. Fund. Research, Oxford University Press, Bombay, 1973. · Zbl 0298.28001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.