×

Kähler geometry of the universal Teichmüller space and coadjoint orbits of the Virasoro group. (English. Russian original) Zbl 1351.32023

Proc. Steklov Inst. Math. 253, 160-185 (2006); translation from Tr. Mat. Inst. Steklova 253, 175-203 (2006).
Summary: The Kähler geometry of the universal Teichmüller space and related infinite-dimensional Kähler manifolds is studied. The universal Teichmüller space \(\mathcal T\) may be realized as an open subset in the complex Banach space of holomorphic quadratic differentials in the unit disc. The classical Teichmüller spaces \(T(G)\), where \(G\) is a Fuchsian group, are contained in \(\mathcal T\) as complex Kähler submanifolds. The homogeneous spaces \(\mathrm{Diff}_{+}(S^{1})/\mathrm{M\"ob}(S^{1})\) and \(\mathrm{Diff}_{+}(S^{1})/S^{1}\) of the diffeomorphism group \(\mathrm{Diff}_{+}(S^{1})\) of the unit circle are closely related to \(\mathcal T\). They are Kähler Frechet manifolds that can be realized as coadjoint orbits of the Virasoro group (and exhaust all coadjoint orbits of this group that have the Kähler structure).

MSC:

32G15 Moduli of Riemann surfaces, Teichmüller theory (complex-analytic aspects in several variables)
58B20 Riemannian, Finsler and other geometric structures on infinite-dimensional manifolds
17B68 Virasoro and related algebras
Full Text: DOI

References:

[1] L. V. Ahlfors, Lectures on Quasiconformal Mappings (Van Nostrand, Princeton, 1966; Mir, Moscow, 1969). · Zbl 0138.06002
[2] R. Bowen, ”Hausdorff Dimension of Quasicircles,” Publ. Math., Inst. Hautes Étud. Sci. 50, 259–273 (1979).
[3] A. Douady and C. J. Earle, ”Conformally Natural Extension of Homeomorphisms of the Circle,” Acta Math. 157, 23–48 (1986). · Zbl 0615.30005 · doi:10.1007/BF02392590
[4] C. J. Earle and J. Elles, ”On the Differential Geometry of Teichmüller Spaces,” J. Anal. Math. 19, 35–52 (1967). · Zbl 0156.30604 · doi:10.1007/BF02788708
[5] L. Guieu, ”Nombre de rotation, structures géométriques sur un cercle et groupe de Bott-Virasoro,” Ann. Inst. Fourier 46, 971–1009 (1996). · Zbl 0853.17022 · doi:10.5802/aif.1537
[6] A. A. Kirillov, ”Infinite Dimensional Lie Groups: Their Orbits, Invariants and Representations. The Geometry of Moments,” in Twistor Geometry and Nonlinear Systems, Primorsko (Bulg.), 1980 (Springer, Berlin, 1982), Lect. Notes Math. 970, pp. 101–123.
[7] A. A. Kirillov and D. V. Yur’ev, ”Kähler Geometry of the Infinite-Dimensional Homogeneous Space M = Diff+(S 1)/Rot(S 1),” Funkts. Anal. Prilozh. 21(4), 35–46 (1987) [Funct. Anal. Appl. 21, 284–294 (1987)].
[8] V. F. Lazutkin and T. F. Pankratova, ”Normal Forms and Versal Deformations for Hill’s Equation,” Funkts. Anal. Prilozh. 9(4), 41–48 (1975) [Funct. Anal. Appl. 9, 306–311 (1975)]. · Zbl 0316.30019 · doi:10.1007/BF01078174
[9] L. Lempert, ”The Virasoro Group as a Complex Manifold,” Math. Res. Lett. 2, 479–495 (1995). · Zbl 0847.22006 · doi:10.4310/MRL.1995.v2.n4.a8
[10] S. Nag, The Complex Analytic Theory of Teichmüller Spaces (J. Wiley and Sons, New York, 1988). · Zbl 0667.30040
[11] S. Nag, ”A Period Mapping in Universal Teichmüller Space,” Bull. Am. Math. Soc. 26, 280–287 (1992). · Zbl 0749.32013 · doi:10.1090/S0273-0979-1992-00273-2
[12] S. Nag and D. Sullivan, ”Teichmüller Theory and the Universal Period Mapping via Quantum Calculus and the H 1/2 Space on the Circle,” Osaka J. Math. 32, 1–34 (1995). · Zbl 0820.30027
[13] S. Nag and A. Verjovsky, ”Diff(S 1) and the Teichmüller Spaces,” Commun. Math. Phys. 130, 123–138 (1990). · Zbl 0705.32013 · doi:10.1007/BF02099878
[14] A. Pfluger, ”Über die Konstruktion Riemannscher Flächen durch Verhäftung,” J. Indian Math. Soc. 24, 401–412 (1961). · Zbl 0112.05303
[15] A. Pressley and G. Segal, Loop Groups (Clarendon Press, Oxford, 1986; Mir, Moscow, 1990). · Zbl 0618.22011
[16] G. Segal, ”Unitary Representations of Some Infinite-Dimensional Groups,” Commun. Math. Phys. 80, 301–392 (1981). · Zbl 0495.22017 · doi:10.1007/BF01208274
[17] A. G. Sergeev, Kähler Geometry of Loop Spaces (Moscow Cent. Cont. Math. Educ., Moscow, 2001) [in Russian].
[18] E. Witten, ”Coadjoint Orbits of the Virasoro Group,” Commun. Math. Phys. 114, 1–53 (1988). · Zbl 0632.22015 · doi:10.1007/BF01218287
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.