×

Infinitesimal CR automorphisms and stability groups of infinite-type models in \(\mathbb{C}^2\). (English) Zbl 1351.32060

The authors study the local automorphisms of rigid hypersurfaces of infinite type in \(\mathbb C^2\). The results depend on whether the infinite-type degeneracy of the Levi form occurs on an isolated line or not. In the former case the Lie algebra of infinitesimal automorphisms splits into the obvious (due to rigidity) translation part and a possible stability part. Theorem 2 deals with the case of a second translation symmetry, which causes the degeneracy to extend along a plane. This implies that the stability group vanishes. In Theorem 3, the authors show that the presence of a infinitesimal rotation symmetry implies that the defining function of a rigid infinite type hypersurface is rotationally invariant.

MSC:

32V40 Real submanifolds in complex manifolds
32H02 Holomorphic mappings, (holomorphic) embeddings and related questions in several complex variables
32H50 Iteration of holomorphic maps, fixed points of holomorphic maps and related problems for several complex variables

References:

[1] M. Abate, “Discrete holomorphic local dynamical systems” in Holomorphic Dynamical Systems , Lecture Notes in Math. 1998 , Springer, Berlin, 2010, 1-55. · Zbl 1220.37037 · doi:10.1007/978-3-642-13171-4_1
[2] F. Bracci, Local dynamics of holomorphic diffeomorphisms , Boll. Unione Mat. Ital. 7 (2004), 609-636. · Zbl 1115.32009
[3] S. S. Chern and J. K. Moser, Real hypersurfaces in complex manifolds , Acta Math. 133 (1974), 219-271. · Zbl 0302.32015 · doi:10.1007/BF02392146
[4] J. P. D’Angelo, Real hypersurfaces, orders of contact, and applications , Ann. of Math. (2) 115 (1982), 615-637. · Zbl 0488.32008 · doi:10.2307/2007015
[5] V. Ezhov, M. Kolář, and G. Schmalz, Degenerate hypersurfaces with a two-parametric family of automorphisms , Complex Var. Elliptic Equ. 54 (2009), 283-291. · Zbl 1178.32024 · doi:10.1080/17476930902760443
[6] V. Ezhov, M. Kolář, and G. Schmalz, Normal forms and symmetries of real hypersurfaces of finite type in \(\mathbb{C}^{2}\) , Indiana Univ. Math. J. 62 (2013), 1-32. · Zbl 1295.32048 · doi:10.1512/iumj.2013.62.4833
[7] K.-T. Kim and N. V. Thu, On the tangential holomorphic vector fields vanishing at an infinite type point , Trans. Amer. Math. Soc. 367 (2015), 867-885. · Zbl 1319.32014 · doi:10.1090/S0002-9947-2014-05917-5
[8] M. Kolář, Normal forms for hypersurfaces of finite type in \(\mathbb{C}^{2}\) , Math. Res. Lett. 12 (2005), 897-910. · Zbl 1086.32030 · doi:10.4310/MRL.2005.v12.n6.a10
[9] M. Kolář, Local symmetries of finite type hypersurfaces in \(\mathbb{C}^{2}\) , Sci. China Ser. A 49 (2006), 1633-1641. · Zbl 1115.32023 · doi:10.1007/s11425-006-2049-6
[10] M. Kolář, Local equivalence of symmetric hypersurfaces in \(\mathbb{C}^{2}\) , Trans. Amer. Math. Soc. 362 , no. 6 (2010), 2833-2843. · Zbl 1193.32019 · doi:10.1090/S0002-9947-10-05058-0
[11] M. Kolář and F. Meylan, Infinitesimal CR automorphisms of hypersurfaces of finite type in \(\mathbb{C}^{2}\) , Arch. Math. (Brno) 47 (2011), 367-375. · Zbl 1265.32023
[12] M. Kolář, F. Meylan, and D. Zaitsev, Chern-Moser operators and polynomial models in CR geometry , Adv. Math. 263 (2014), 321-356. · Zbl 1294.32010 · doi:10.1016/j.aim.2014.06.017
[13] V. T. Ninh, On the existence of tangential holomorphic vector fields vanishing at an infinite type point , preprint, [math.CV]. arXiv:1303.6156v7
[14] V. T. Ninh, On the CR automorphism group of a certain hypersurface of infinite type in \(\mathbb{C}^{2}\) , Complex Var. Elliptic Equ. 60 (2015), 977-991. · Zbl 1333.32026 · doi:10.1080/17476933.2014.986656
[15] V. T. Ninh, V. T. Chu, and A. D. Mai, On the real-analytic infinitesimal CR automorphism of hypersurfaces of infinite type , preprint, [math.CV]. arXiv:1404.4914v2
[16] N. K. Stanton, Infinitesimal CR automorphisms of rigid hypersurfaces , Amer. J. Math. 117 (1995), 141-167. · Zbl 0826.32013 · doi:10.2307/2375039
[17] N. K. Stanton, Infinitesimal CR automorphisms of real hypersurfaces , Amer. J. Math. 118 (1996), 209-233. · Zbl 0849.32012 · doi:10.1353/ajm.1996.0005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.