zbMATH — the first resource for mathematics

Dynamics of a class of nonautonomous Lorenz-type systems. (English) Zbl 1352.34017

34A34 Nonlinear ordinary differential equations and systems
37C60 Nonautonomous smooth dynamical systems
34D45 Attractors of solutions to ordinary differential equations
34C28 Complex behavior and chaotic systems of ordinary differential equations
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
Full Text: DOI
[1] Anishchenko, V. S., Vadivasova, T. E. & Sosnovtseva, O. [1996] ” Strange nonchaotic attractors in autonomous and periodically driven systems,” Phys. Rev. E54, 3231-3234. genRefLink(16, ’S0218127416502084BIB001’, ’10.1103%252FPhysRevE.54.3231’); genRefLink(128, ’S0218127416502084BIB001’, ’A1996VN17600030’);
[2] Anishchenko, V. S., Vadivasova, T. E. & Sosnovtseva, O. [1997] ” Reply to ”comment on ’strange nonchaotic attractors in autonomous and periodically driven systems,” Phys. Rev. E56, 7322-7322. genRefLink(16, ’S0218127416502084BIB002’, ’10.1103%252FPhysRevE.56.7322’); genRefLink(128, ’S0218127416502084BIB002’, ’000071043500142’);
[3] Cheban, D. N., Kloeden, P. E. & Schmalfuss, B. [2002] ” The relationship between pullback, forward and global attractors of nonautonomous dynamical systems,” Nonlin. Dyn. Syst. Th.2, 125-144. · Zbl 1054.34087
[4] Cheban, D. & Duan, J. [2004] ” Recurrent motions and global attractors of nonautonomous Lorenz systems,” Dyn. Syst.19, 41-59. genRefLink(16, ’S0218127416502084BIB004’, ’10.1080%252F14689360310001624132’); · Zbl 1060.37016
[5] Chen, G. & Ueta, T. [1999] ” Yet another chaotic attractor,” Int. J. Bifurcation and Chaos9, 1465-1466. [Abstract] genRefLink(128, ’S0218127416502084BIB005’, ’000082967600015’); · Zbl 0962.37013
[6] Chen, G. & Lü, J. [2003] Dynamics of the Lorenz System Family: Analysis, Control and Synchronization (in Chinese) (Science Press, Beijing).
[7] Chepyzhov, V. V. [2013] ” Uniform attractors of dynamical processes and non-autonomous equations of mathematical physics,” Russ. Math. Surv.68, 159-196. genRefLink(16, ’S0218127416502084BIB007’, ’10.1070%252FRM2013v068n02ABEH004832’); genRefLink(128, ’S0218127416502084BIB007’, ’000320927900005’);
[8] Chua, L. O., Komuro, M. & Matsumoto, T. [1986] ” The double scroll family,” IEEE Trans. Circuits Syst.33, 1072-1118. genRefLink(16, ’S0218127416502084BIB008’, ’10.1109%252FTCS.1986.1085869’); · Zbl 0634.58015
[9] Feudel, U., Kurths, J. & Pikovsky, A. S. [1995] ” Strange non-chaotic attractor in a quasiperiodically forced circle map,” Physica D88, 176-186. genRefLink(16, ’S0218127416502084BIB009’, ’10.1016%252F0167-2789%252895%252900205-I’); genRefLink(128, ’S0218127416502084BIB009’, ’A1995TG13500003’);
[10] Franz, M. & Zhang, M. [1995] ” Suppression and creation of chaos in a periodically forced Lorenz system,” Phys. Rev. E52, 3558-3565. genRefLink(16, ’S0218127416502084BIB010’, ’10.1103%252FPhysRevE.52.3558’); genRefLink(128, ’S0218127416502084BIB010’, ’A1995TA52300032’);
[11] Grebogi, C., Ott, E., Pelikan, S. & Yorke, J. A. [1984] ” Strange attractors that are not chaotic,” Physica D13, 261-268. genRefLink(16, ’S0218127416502084BIB011’, ’10.1016%252F0167-2789%252884%252990282-3’); genRefLink(128, ’S0218127416502084BIB011’, ’A1984TL01100015’);
[12] Heagy, J. F. & Ditto, W. L. [1991] ” Dynamics of a two-frequency parametrically driven Duffing oscillator,” J. Nonlin. Sci.1, 423-455. genRefLink(16, ’S0218127416502084BIB012’, ’10.1007%252FBF02429848’); · Zbl 0794.34028
[13] Heagy, J. F. & Hammel, S. M. [1994] ” The birth of strange nonchaotic attractors,” Physica D70, 140-153. genRefLink(16, ’S0218127416502084BIB013’, ’10.1016%252F0167-2789%252894%252990061-2’); genRefLink(128, ’S0218127416502084BIB013’, ’A1994MT87500008’);
[14] Kuznetsov, S. P., Pikovsky, A. S. & Feudel, U. [1995] ” Birth of a strange nonchaotic attractor: A renormalization group analysis,” Phys. Rev. E51, 1629-1632. genRefLink(16, ’S0218127416502084BIB014’, ’10.1103%252FPhysRevE.51.R1629’); genRefLink(128, ’S0218127416502084BIB014’, ’A1995QP25200002’);
[15] Leonov, G., Bunin, A. & Koksch, N. [1987] ” Attractor localization of the Lorenz system,” Z. Angew. Math. Mech.67, 649-656. genRefLink(16, ’S0218127416502084BIB015’, ’10.1002%252Fzamm.19870671215’); genRefLink(128, ’S0218127416502084BIB015’, ’A1987L475100008’); · Zbl 0653.34040
[16] Li, D., Lu, J., Wu, X. & Chen, G. [2005] ” Estimating the bounds for the Lorenz family of chaotic systems,” Chaos Solit. Fract.23, 529-534. genRefLink(16, ’S0218127416502084BIB016’, ’10.1016%252Fj.chaos.2004.05.021’); genRefLink(128, ’S0218127416502084BIB016’, ’000224148700022’); · Zbl 1061.93506
[17] Li, D., Lu, J., Wu, X. & Chen, G. [2006] ” Estimating the ultimate bound and positively invariant set for the Lorenz system and a unified chaotic system,” J. Math. Anal. Appl.323, 844-853. genRefLink(16, ’S0218127416502084BIB017’, ’10.1016%252Fj.jmaa.2005.11.008’); genRefLink(128, ’S0218127416502084BIB017’, ’000241132100006’); · Zbl 1104.37024
[18] Li, D., Wu, X. & Lu, J. [2009] ” Estimating the ultimate bound and positively invariant set for the hyperchaotic Lorenz-Haken system,” Chaos Solit. Fract.39, 1290-1296. genRefLink(16, ’S0218127416502084BIB018’, ’10.1016%252Fj.chaos.2007.06.038’); genRefLink(128, ’S0218127416502084BIB018’, ’000265471400034’); · Zbl 1197.37034
[19] Liao, X. [2004] ” On the global basin of attraction and positively invariant set for the Lorenz chaotic system and its application in chaos control and synchronization,” Sci. China Ser. E34, 1404-1419.
[20] Lorenz, E. [1963] ” Deterministic non-periodic flow,” J. Atmos. Sci.20, 130-141. genRefLink(16, ’S0218127416502084BIB020’, ’10.1175%252F1520-0469%25281963%2529020%253C0130%253ADNF%253E2.0.CO%253B2’); genRefLink(128, ’S0218127416502084BIB020’, ’A1963WS58000008’);
[21] Nishikawa, T. & Kaneko, K. [1996] ” Fractalization of torus revisited as a strange nonchaotic attractor,” Phys. Rev. E54, 6114-6124. genRefLink(16, ’S0218127416502084BIB021’, ’10.1103%252FPhysRevE.54.6114’); genRefLink(128, ’S0218127416502084BIB021’, ’A1996WA83900034’);
[22] Parker, T. S. & Chua, L. O. [1989] Practical Numerical Algorithms for Chaotic Systems (Springer-Verlag, NY). genRefLink(16, ’S0218127416502084BIB022’, ’10.1007%252F978-1-4612-3486-9’); · Zbl 0692.58001
[23] Pikovsky, A. & Feudel, U. [1997] ” Comment on ’Strange nonchaotic attractors in autonomous and periodically driven systems’,” Phys. Rev. E56, 7320-7321. genRefLink(16, ’S0218127416502084BIB023’, ’10.1103%252FPhysRevE.56.7320’); genRefLink(128, ’S0218127416502084BIB023’, ’000071043500141’);
[24] Pogromsky, A. Y., Santoboni, G. & Nijmeijer, H. [2003] ” An ultimate bound on the trajectories of the Lorenz system and its applications,” Nonlinearity16, 1597-1605. genRefLink(16, ’S0218127416502084BIB024’, ’10.1088%252F0951-7715%252F16%252F5%252F303’); genRefLink(128, ’S0218127416502084BIB024’, ’000185507700003’);
[25] Prasad, A., Negi, S. S. & Ramaswamy, R. [2001] ” Strange nonchaotic attractors,” Int. J. Bifurcation and Chaos11, 291-309. [Abstract] genRefLink(128, ’S0218127416502084BIB025’, ’000168550500002’); · Zbl 1090.37527
[26] Rössler, O. E. [1976] ” An equation for continuous chaos,” Phys. Lett. A57, 397-398. genRefLink(16, ’S0218127416502084BIB026’, ’10.1016%252F0375-9601%252876%252990101-8’); genRefLink(128, ’S0218127416502084BIB026’, ’A1976CB23000001’);
[27] Sandri, M. [1996] ” Numerical calculation of Lyapunov exponents,” Mathematica J.6, 78-84.
[28] Saravanan, R., Narayan, O., Banerjee, K. & Bhattacharjee, J. K. [1985] ” Chaos in a periodically forced Lorenz system,” Phys. Rev. A31, 520-522. genRefLink(16, ’S0218127416502084BIB028’, ’10.1103%252FPhysRevA.31.520’); genRefLink(128, ’S0218127416502084BIB028’, ’A1985TX84400065’);
[29] Sataev, E. A. [2005] ” Non-existence of stable trajectories in non-autonomous perturbations of systems of Lorenz type,” Sbornik Math.196, 99-134. genRefLink(16, ’S0218127416502084BIB029’, ’10.1070%252FSM2005v196n04ABEH000892’); genRefLink(128, ’S0218127416502084BIB029’, ’000230563300011’);
[30] Schmalfuss, B. [2003] ” Attractors for nonautonomous and random dynamical systems perturbed by impulses,” Discr. Contin. Dyn. Syst.9, 727-744. genRefLink(16, ’S0218127416502084BIB030’, ’10.3934%252Fdcds.2003.9.727’); genRefLink(128, ’S0218127416502084BIB030’, ’000182726800013’); · Zbl 1029.37030
[31] Shi, P., He, D., Fu, W., Kang, W. & Hu, G. [2001] ” Strange-nonchaotic-attractor-like behaviors in coupled map systems,” Commun. Theor. Phys.35, 389-394. genRefLink(16, ’S0218127416502084BIB031’, ’10.1088%252F0253-6102%252F35%252F4%252F389’); genRefLink(128, ’S0218127416502084BIB031’, ’000168939700002’);
[32] Sparrow, C. [1982] The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors (Springer-Verlag, NY). genRefLink(16, ’S0218127416502084BIB032’, ’10.1007%252F978-1-4612-5767-7’); · Zbl 0504.58001
[33] Wang, X., Zhan, M., Lai, C. & Lai, Y. [2004] ” Strange nonchaotic attractors in random dynamical systems,” Phys. Rev. Lett.92, 741021-741024. genRefLink(16, ’S0218127416502084BIB033’, ’10.1103%252FPhysRevLett.92.074102’); genRefLink(128, ’S0218127416502084BIB033’, ’000189139500025’);
[34] Yalçınkaya, T. & Lai, Y. [1997] ” Bifurcation to strange nonchaotic attractors,” Phys. Rev. E56, 1623-1630. genRefLink(16, ’S0218127416502084BIB034’, ’10.1103%252FPhysRevE.56.1623’); genRefLink(128, ’S0218127416502084BIB034’, ’A1997XR16000049’);
[35] Yang, T. & Bilimgut, K. [1997] ” Experimental results of strange nonchaotic phenomenon in a second order quasi-periodically forced electronic circuit,” Phys. Lett. A236, 494-504. genRefLink(16, ’S0218127416502084BIB035’, ’10.1016%252FS0375-9601%252897%252900833-5’); genRefLink(128, ’S0218127416502084BIB035’, ’000071179800017’);
[36] Zhang, F. & Zhang, G. [2015] ” Further results on ultimate bound on the trajectories of the Lorenz system,” Qual. Th. Dyn. Syst.15, 221-235. genRefLink(16, ’S0218127416502084BIB036’, ’10.1007%252Fs12346-015-0137-0’); genRefLink(128, ’S0218127416502084BIB036’, ’000374065100013’); · Zbl 1338.65275
[37] Zhang, X. [2016] ”A simple planar nonautonomous system with infinitely many transitive components,” preprint.
[38] Zhao, Q., Zhou, S. & Li, X. [2008] ” Synchronization slaved by partial-states in lattices of non-autonomous coupled Lorenz equation,” Commun. Nonlin. Sci. Numer. Simulat.13, 928-938. genRefLink(16, ’S0218127416502084BIB038’, ’10.1016%252Fj.cnsns.2006.09.001’); genRefLink(128, ’S0218127416502084BIB038’, ’000254602200008’); · Zbl 1221.37073
[39] Zhou, T., Moss, F. & Bulsara, A. [1992] ” Observation of strange nonchaotic attractor in a multistable potential,” Phys. Rev. A45, 5394-5400. genRefLink(16, ’S0218127416502084BIB039’, ’10.1103%252FPhysRevA.45.5394’); genRefLink(128, ’S0218127416502084BIB039’, ’A1992HQ03800015’);
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.