On unbounded invariant measures of stochastic dynamical systems. (English) Zbl 1352.37155

Summary: We consider stochastic dynamical systems on \(\mathbb{R}\), that is, random processes defined by \(X_{n}^{x}=\Psi_{n}(X_{n-1}^{x})\), \(X_{0}^{x}=x\), where \(\Psi_{n}\) are i.i.d. random continuous transformations of some unbounded closed subset of \(\mathbb{R}\). We assume here that \(\Psi_{n}\) behaves asymptotically like \(A_{n}x\), for some random positive number \(A_{n}\) [the main example is the affine stochastic recursion \(\Psi_{n}(x)=A_{n}x+B_{n}\)]. Our aim is to describe invariant Radon measures of the process \(X_{n}^{x}\) in the critical case, when \(\mathbb{E}\log A_{1}=0\). We prove that those measures behave at infinity like \(\frac{dx}{x}\). We study also the problem of uniqueness of the invariant measure. We improve previous results known for the affine recursions and generalize them to a larger class of stochastic dynamical systems which include, for instance, reflected random walks, stochastic dynamical systems on the unit interval \([0,1]\), additive Markov processes and a variant of the Galton-Watson process.


37H10 Generation, random and stochastic difference and differential equations
60J05 Discrete-time Markov processes on general state spaces
60B15 Probability measures on groups or semigroups, Fourier transforms, factorization
Full Text: DOI arXiv Euclid


[1] Aldous, D. (1989). Probability Approximations Via the Poisson Clumping Heuristic. Applied Mathematical Sciences 77 . Springer, New York. · Zbl 0679.60013
[2] Babillot, M., Bougerol, P. and Élie, L. (1997). The random difference equation \(X_{n}=A_{n}X_{n-1}+B_{n}\) in the critical case. Ann. Probab. 25 478-493. · Zbl 0873.60045
[3] Benda, M. (1998). Schwach kontraktive dynamische Systeme. Ph.D. thesis, Ludwig-Maximilans-Univ. München. · Zbl 0928.60047
[4] Brofferio, S., Buraczewski, D. and Damek, E. (2012). On the invariant measure of the random difference equation \(X_{n}=A_{n}X_{n-1}+B_{n}\) in the critical case. Ann. Inst. Henri Poincaré Probab. Stat. 48 377-395. · Zbl 1259.60077
[5] Brofferio, S., Buraczewski, D. and Damek, E. (2013). On solutions of the affine recursion and the smoothing transform in the critical case. In Random Matrices and Iterated Random Functions. Springer Proceedings in Mathematics & Statistics 53 137-157. Springer, Berlin. · Zbl 1291.60146
[6] Buraczewski, D. (2007). On invariant measures of stochastic recursions in a critical case. Ann. Appl. Probab. 17 1245-1272. · Zbl 1151.60034
[7] Chow, Y. S. and Lai, T. L. (1979). Moments of ladder variables for driftless random walks. Z. Wahrsch. Verw. Gebiete 48 253-257. · Zbl 0416.60078
[8] Deroin, B., Kleptsyn, V., Navas, A. and Parwani, K. (2013). Symmetric random walks on \(\mathrm{Homeo}^{+}(\mathbb{R})\). Ann. Probab. 41 2066-2089. · Zbl 1300.60104
[9] Diaconis, P. and Freedman, D. (1999). Iterated random functions. SIAM Rev. 41 45-76. · Zbl 0926.60056
[10] Durrett, R. and Liggett, T. M. (1983). Fixed points of the smoothing transformation. Z. Wahrsch. Verw. Gebiete 64 275-301. · Zbl 0506.60097
[11] Élie, L. (1982). Comportement asymptotique du noyau potentiel sur les groupes de Lie. Ann. Sci. École Norm. Sup. (4) 15 257-364. · Zbl 0509.60070
[12] Feller, W. (1966). An Introduction to Probability Theory and Its Applications. Vol. II . Wiley, New York. · Zbl 0138.10207
[13] Goldie, C. M. (1991). Implicit renewal theory and tails of solutions of random equations. Ann. Appl. Probab. 1 126-166. · Zbl 0724.60076
[14] Grincevičjus, A. K. (1974). A central limit theorem for the group of linear transformations of the line. Dokl. Akad. Nauk SSSR 219 23-26.
[15] Kesten, H. (1973). Random difference equations and renewal theory for products of random matrices. Acta Math. 131 207-248. · Zbl 0291.60029
[16] Kolesko, K. (2013). Tail homogeneity of invariant measures of multidimensional stochastic recursions in a critical case. Probab. Theory Related Fields 156 593-612. · Zbl 1303.60010
[17] Le Page, É. and Peigné, M. (1997). A local limit theorem on the semi-direct product of \(\mathbf{R}^{*+}\) and \(\mathbf{R}^{d}\). Ann. Inst. Henri Poincaré Probab. Stat. 33 223-252. · Zbl 0881.60018
[18] Lin, M. (1970). Conservative Markov processes on a topological space. Israel J. Math. 8 165-186. · Zbl 0219.60005
[19] Mirek, M. (2011). Heavy tail phenomenon and convergence to stable laws for iterated Lipschitz maps. Probab. Theory Related Fields 151 705-734. · Zbl 1236.60025
[20] Peigné, M. and Woess, W. (2011). Stochastic dynamical systems with weak contractivity properties I. Strong and local contractivity. Colloq. Math. 125 31-54. · Zbl 1267.37056
[21] Peigné, M. and Woess, W. (2011). Stochastic dynamical systems with weak contractivity properties II. Iteration of Lipschitz mappings. Colloq. Math. 125 55-81. · Zbl 1260.37026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.