×

Convolution of ultradistributions and ultradistribution spaces associated to translation-invariant Banach spaces. (English) Zbl 1352.46039

The authors introduce and study new classes of translation-invariant ultradistribution spaces which are natural generalizations of the spaces of ultradistributions with \(L^p\) growth.
The paper is organized as follows. Section 3 contains a characterization of tempered ultradistributions in terms of growth estimates for convolution averages. The convolutors for the space of tempered ultradistributions are described through duality with respect to a test function space constructed in this article. Section 4 is dedicated to the analysis of translation-invariant Banach spaces of tempered ultradistributions. It is proved that such a Banach space is a Banach module over the Beurling algebra \(L^1_\omega,\) were \(\omega(h)\) is the norm of the translation operator \(T_{-h}\) on the Banach space \(E.\) The classes of ultradifferentiable functions (of Beurling and Roumieu type) associated to a translation-invariant Banach space are introduced and studied in Section 5, while the corresponding classes of ultradistributions are discussed in Section 6. As important examples, the case that the Banach space \(E\) is a weighted \(L^p\) space is considered in Section 7.
The most important result of the present article is related to the convolution of Roumieu ultradistributions and is contained in the final Section 8. The authors show (Theorem 8.2) that the convolution of \(T,S\in {\mathcal D}^{'\left\{M_p\right\}}({\mathbb R}^d)\) exists if and only if \(\left(\varphi\ast\check{S}\right)T\in {\mathcal D}_{L^1}^{'\left\{M_p\right\}}({\mathbb R}^d)\) for every \(\varphi\in {\mathcal D}^{\left\{M_p\right\}}({\mathbb R}^d).\) This extends a previous result by R. Shiraishi on classical distributions [J. Sci. Hiroshima Univ., Ser. A 23, 19–32 (1959; Zbl 0091.28601)]. The existence of convolution for Beurling ultradistributions was already considered in the literature but the corresponding characterization in the Roumieu setting is more involved and has been a long-standing open question.

MSC:

46F05 Topological linear spaces of test functions, distributions and ultradistributions
46H25 Normed modules and Banach modules, topological modules (if not placed in 13-XX or 16-XX)
46F10 Operations with distributions and generalized functions
46E10 Topological linear spaces of continuous, differentiable or analytic functions

Citations:

Zbl 0091.28601

References:

[1] J. J. Betancor, C. Fernández, and A. Galbis, Beurling ultradistributions of \(L_{p}\)-growth , J. Math. Anal. Appl. 279 (2003), 246-265. · Zbl 1023.46042 · doi:10.1016/S0022-247X(03)00006-4
[2] A. Beurling, “Sur les intégrales de Fourier absolument convergentes et leur application à une transformation fonctionelle” in IX Congr. Math. Scand. , Mercator, Helsinki, 1938, 345-366.
[3] R. D. Carmichael, A. Kamiński, and S. Pilipović, Boundary Values and Convolution in Ultradistribution Spaces , Ser. Anal. Appl. Comput. 1 , World Sci., Hackensack, N. J., 2007. · Zbl 1155.46002
[4] P. Dimovski, S. Pilipović, and J. Vindas, New distribution spaces associated to translation-invariant Banach spaces , Monatsh. Math. 177 (2015), 495-515. · Zbl 1337.46031 · doi:10.1007/s00605-014-0706-3
[5] P. Dimovski, S. Pilipović, and J. Vindas, Boundary values of holomorphic functions and heat kernel method in translation-invariant distribution spaces , Complex Var. Elliptic Equ. 60 (2015), 1169-1189. · Zbl 1337.46033 · doi:10.1080/17476933.2014.1002399
[6] P. Dimovski, B. Prangoski, and D. Velinov, Multipliers and convolutors in the space of tempered ultradistributions , Novi Sad J. Math. 44 (2014), 1-18. · Zbl 1457.46053
[7] J. Horváth, Topological Vector Spaces and Distributions, I , Addison-Wesley, Reading, Mass., 1966.
[8] A. Kamiński, D. Kovačević, and S. Pilipović, The equivalence of various definitions of the convolution of ultradistributions , Trudy Mat. Inst. Steklov. 203 (1994), 307-322.
[9] A. Kamiński and S. Mincheva-Kamińska, Compatibility conditions and the convolution of functions and generalized functions , J. Funct. Spaces Appl. 2013 , no. 356724.
[10] J. Kisyński, On Cohen’s proof of the factorization theorem , Ann. Polon. Math. 75 (2000), 177-192. · Zbl 0970.46033
[11] H. Komatsu, Ultradistributions, I: Structure theorems and a characterization , J. Fac. Sci. Univ. Tokyo Sect. IA Math. 20 (1973), 25-105. · Zbl 0258.46039
[12] H. Komatsu, Ultradistributions, II: The kernel theorem and ultradistributions with support in a submanifold , J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977), 607-628. · Zbl 0385.46027
[13] H. Komatsu, Ultradistributions, III: Vector-valued ultradistributions and the theory of kernels , J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29 (1982), 653-717. · Zbl 0507.46035
[14] H. Komatsu, “Microlocal analysis in Gevrey classes and in complex domains” in Microlocal Analysis and Applications (Montecatini Terme, 1989) , Lecture Notes in Math. 1495 , Springer, Berlin, 1991, 161-236. · Zbl 0791.35003 · doi:10.1007/BFb0085124
[15] G. Köthe, Topological Vector Spaces, I , Grundlehren Math. Wiss. 159 , Springer, New York, 1969.
[16] G. Köthe, Topological Vector Spaces, II , Grundlehren Math. Wiss. 237 , Springer, New York, 1979.
[17] N. Ortner and P. Wagner, Applications of weighted \(\mathcal{D}'_{L_{p}}\)-spaces to the convolution of distributions , Bull. Polish Acad. Sci. Math. 37 (1989), 579-595. · Zbl 0807.46037
[18] N. Ortner and P. Wagner, On the spaces \(\mathcal{O}^{m}_{C}\) of John Horváth , J. Math. Anal. Appl. 415 (2014), 62-74. · Zbl 1390.46042 · doi:10.1016/j.jmaa.2014.01.018
[19] S. Pilipović, Tempered ultradistributions , Boll. Unione Mat. Ital. 2 (1988), 235-251.
[20] S. Pilipović, On the convolution in the space of Beurling ultradistributions , Comment. Math. Univ. St. Paul. 40 (1991), 15-27. · Zbl 0763.46029
[21] S. Pilipović, Characterizations of bounded sets in spaces of ultradistributions , Proc. Amer. Math. Soc. 120 (1994), 1191-1206. · Zbl 0816.46026 · doi:10.2307/2160237
[22] S. Pilipović and B. Prangoski, On the convolution of Roumieu ultradistributions through the \(\varepsilon\) tensor product , Monatsh. Math. 173 (2014), 83-105. · Zbl 1297.46030 · doi:10.1007/s00605-013-0503-4
[23] B. Prangoski, Laplace transform in spaces of ultradistributions , Filomat 27 (2013), 747-760. · Zbl 1340.46032 · doi:10.2298/FIL1305747P
[24] H. H. Schaefer, Topological Vector Spaces , Grad. Texts in Math. 3 , Springer, New York, 1970.
[25] L. Schwartz, Espaces de fonctions différentiables à valeurs vectorielles , J. Analyse Math. 4 (1954/55), 88-148. · Zbl 0066.09601 · doi:10.1007/BF02787718
[26] L. Schwartz, Théorie des distributions à valeurs vectorielles, I , Ann. Inst. Fourier (Grenoble) 7 (1957), 1-141. · Zbl 0089.09601 · doi:10.5802/aif.68
[27] L. Schwartz, Théorie des distributions , Hermann, Paris, 1966.
[28] R. Shiraishi, On the definition of convolutions for distributions , J. Sci. Hiroshima Univ. Ser. A 23 (1959), 19-32. · Zbl 0091.28601
[29] F. Trèves, Topological Vector Spaces, Distributions and Kernels , Academic Press, New York, 1967.
[30] P. Wagner, On convolution in weighted \(\mathcal{D}'_{L^{p}}\)-spaces , Math. Nachr. 287 (2014), 472-477. · Zbl 1339.46042 · doi:10.1002/mana.201200271
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.