×

zbMATH — the first resource for mathematics

Shape optimization problems with Robin conditions on the free boundary. (English) Zbl 1352.49045
Summary: We provide a free discontinuity approach to a class of shape optimization problems involving Robin conditions on the free boundary. More precisely, we identify a large family of domains on which such problems are well-posed in a way that the extended problem can be considered a relaxed version of the corresponding one on regular domains, we prove existence of a solution and obtain some qualitative information on the optimal sets.

MSC:
49Q10 Optimization of shapes other than minimal surfaces
35R35 Free boundary problems for PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alt, H. W.; Caffarelli, L. A., Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math., 325, 105-144, (1981) · Zbl 0449.35105
[2] Ambrosio, L.; Fusco, N.; Pallara, D., Functions of bounded variation and free discontinuity problems, Oxf. Math. Monogr., (2000), The Clarendon Press, Oxford University Press New York · Zbl 0957.49001
[3] Babadjian, J.-F.; Giacomini, A., Existence of strong solutions for quasi-static evolution in brittle fracture, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), XIII, 925-974, (2014) · Zbl 1311.49112
[4] Braides, A., Approximation of free-discontinuity problems, Lect. Notes Math., vol. 1694, (1998), Springer-Verlag Berlin · Zbl 0909.49001
[5] Bucur, D.; Giacomini, A., Faber-krahn inequalities for the Robin-Laplacian: a free discontinuity approach, Arch. Ration. Mech. Anal., 218, 2, 757-824, (2015) · Zbl 1458.35286
[6] Bucur, D.; Luckhaus, S., Monotonicity formula and regularity for general free discontinuity problems, Arch. Ration. Mech. Anal., 211, 2, 489-511, (2014) · Zbl 1283.49056
[7] Carriero, M.; Leaci, A., Existence theorem for a Dirichlet problem with free discontinuity set, Nonlinear Anal., 15, 7, 661-677, (1990) · Zbl 0713.49003
[8] Cortesani, G.; Toader, R., A density result in SBV with respect to non-isotropic energies, Nonlinear Anal., Ser. B: Real World Appl., 38, 5, 585-604, (1999) · Zbl 0939.49024
[9] De Giorgi, E.; Ambrosio, L., New functionals in the calculus of variations, Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Natur. (8), 82, 2, 199-210, (1988), (1989) · Zbl 0715.49014
[10] De Giorgi, E.; Carriero, M.; Leaci, A., Existence theorem for a minimum problem with free discontinuity set, Arch. Ration. Mech. Anal., 108, 3, 195-218, (1989) · Zbl 0682.49002
[11] Fonseca, I.; Fusco, N., Regularity results for anisotropic image segmentation models, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), 24, 3, 463-499, (1997) · Zbl 0899.49018
[12] Fusco, N.; Mingione, G.; Trombetti, C., Regularity of minimizers for a class of anisotropic free discontinuity problems, J. Convex Anal., 8, 2, 349-367, (2001) · Zbl 1011.49025
[13] Siaudeau, A., Ahlfors-régularité des quasi-minima de Mumford-Shah, J. Math. Pures Appl. (9), 82, 12, 1697-1731, (2003) · Zbl 1034.49045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.