×

Delocalization of eigenvectors of random matrices with independent entries. (English) Zbl 1352.60007

Summary: We prove that an \(n\times n\) random matrix \(G\) with independent entries is completely delocalized. Suppose that the entries of \(G\) have zero means, variances uniformly bounded below, and a uniform tail decay of exponential type. Then with high probability all unit eigenvectors of \(G\) have all coordinates of magnitude \(O(n-1/2)\), modulo logarithmic corrections. This comes as a consequence of a new, geometric approach to delocalization for random matrices.

MSC:

60B20 Random matrices (probabilistic aspects)
15B52 Random matrices (algebraic aspects)

References:

[1] F. Benaych-Georges and S. Péché, Localization and delocalization for heavy tailed band matrices , Ann. Inst. Henri Poincaré Probab. Stat. 50 (2014), 1385-1403. · Zbl 1307.15054 · doi:10.1214/13-AIHP562
[2] A. Bloemendal, L. Erdős, A. Knowles, H.-T. Yau, and J. Yin, Isotropic local laws for sample covariance and generalized Wigner matrices , Electron. J. Probab. 19 (2014), no. 33. · Zbl 1288.15044
[3] C. Bordenave and A. Guionnet, Localization and delocalization of eigenvectors for heavy-tailed random matrices , Probab. Theory Related Fields 157 (2013), 885-953. · Zbl 1296.15019 · doi:10.1007/s00440-012-0473-9
[4] C. Cacciapuoti, A. Maltsev, and B. Schlein, Local Marchenko-Pastur law at the hard edge of sample covariance matrices , J. Math. Phys. 54 (2013), no. 043302. · Zbl 1282.15031 · doi:10.1063/1.4801856
[5] L. Erdős, “Universality for random matrices and log-gases” in Current Developments in Mathematics 2012 , International Press, Somerville, Mass., 2013, 59-132. · Zbl 1291.15086
[6] L. Erdős and A. Knowles, Quantum diffusion and delocalization for band matrices with general distribution , Ann. Henri Poincaré 12 (2011), 1227-1319. · Zbl 1247.15033 · doi:10.1007/s00023-011-0104-5
[7] L. Erdős and A. Knowles, Quantum diffusion and eigenfunction delocalization in a random band matrix model , Comm. Math. Phys. 303 (2011), 509-554. · Zbl 1226.15024 · doi:10.1007/s00220-011-1204-2
[8] L. Erdős, A. Knowles, H.-T. Yau, and J. Yin, Spectral statistics of Erdős-Rényi graphs, II: Eigenvalue spacing and the extreme eigenvalues , Comm. Math. Phys. 314 (2012), 587-640. · Zbl 1251.05162 · doi:10.1007/s00220-012-1527-7
[9] L. Erdős, A. Knowles, H.-T. Yau, and J. Yin, Delocalization and diffusion profile for random band matrices , Comm. Math. Phys. 323 (2013), 367-416. · Zbl 1279.15027 · doi:10.1007/s00220-013-1773-3
[10] L. Erdős, A. Knowles, H.-T. Yau, and J. Yin, Spectral statistics of Erdős-Rényi graphs, I: Local semicircle law , Ann. Probab. 41 (2013), 2279-2375. · Zbl 1272.05111 · doi:10.1214/11-AOP734
[11] L. Erdős, B. Schlein, and H.-T. Yau, Local semicircle law and complete delocalization for Wigner random matrices , Comm. Math. Phys. 287 (2009), 641-655. · Zbl 1186.60005 · doi:10.1007/s00220-008-0636-9
[12] L. Erdős, B. Schlein, and H.-T. Yau, Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices , Ann. Probab. 37 (2009), 815-852. · Zbl 1175.15028 · doi:10.1214/08-AOP421
[13] L. Erdős, B. Schlein, and H.-T. Yau, Wegner estimate and level repulsion for Wigner random matrices , Int. Math. Res. Not. IMRN 2010 , no. 3, 436-479. · Zbl 1204.15043 · doi:10.1093/imrn/rnp136
[14] L. Erdős and H.-T. Yau, Universality of local spectral statistics of random matrices , Bull. Amer. Math. Soc. (N.S.) 49 (2012), 377-414. · Zbl 1263.15032 · doi:10.1090/S0273-0979-2012-01372-1
[15] L. Erdős, H.-T. Yau, and J. Yin, Bulk universality for generalized Wigner matrices , Probab. Theory Related Fields 154 (2012), 341-407. · Zbl 1277.15026 · doi:10.1007/s00440-011-0390-3
[16] L. Erdős, H.-T. Yau, and J. Yin, Rigidity of eigenvalues of generalized Wigner matrices , Adv. Math. 229 (2012), 1435-1515. · Zbl 1238.15017 · doi:10.1016/j.aim.2011.12.010
[17] J. Fischmann, W. Bruzda, B. A. Khoruzhenko, H.-J. Sommers, and K. Życzkowski, Induced Ginibre ensemble of random matrices and quantum operations , J. Phys. A 45 , no. 7 (2012), art. ID 075203. · Zbl 1241.81011 · doi:10.1088/1751-8113/45/7/075203
[18] P. J. Forrester and T. Nagao, Eigenvalue statistics of the real Ginibre ensemble , Phys. Rev. Lett. 99 (2007), no. 050603.
[19] Y. V. Fyodorov and H.-J. Sommers. Random matrices close to Hermitian or unitary: Overview of methods and results , J. Phys. A 36 , no. 12 (2003), 3303-3347. · Zbl 1069.82006 · doi:10.1088/0305-4470/36/12/326
[20] G. H. Golub and C. F. Van Loan, Matrix Computations , 3rd ed., Johns Hopkins Univ. Press, Baltimore, 1996. · Zbl 0865.65009
[21] R. A. Janik, W. Norenberg, M. A. Nowak, G. Papp, and I. Zahed, Correlations of eigenvectors for non-Hermitian random-matrix models , Phys. Rev. E 60 (1999), 2699-2705.
[22] E. Kanzieper and G. Akemann, Statistics of real eigenvalues in Ginibre’s ensemble of random real matrices , Phys. Rev. Lett. 95 , no. 23 (2005), 230201. · Zbl 1136.82019 · doi:10.1103/PhysRevLett.95.230201
[23] A. Knowles and J. Yin, The isotropic semicircle law and deformation of Wigner matrices , Comm. Pure Appl. Math. 66 (2013), 1663-1750. · Zbl 1290.60004 · doi:10.1002/cpa.21450
[24] R. Latala, P. Mankiewicz, K. Oleszkiewicz, and N. Tomczak-Jaegermann, Banach-Mazur distances and projections on random subgaussian polytopes , Discrete Comput. Geom. 38 (2007), 29-50. · Zbl 1134.52016 · doi:10.1007/s00454-007-1326-7
[25] B. Mehlig and J. T. Chalker, Statistical properties of eigenvectors in non-Hermitian Gaussian random matrix ensembles , J. Math. Phys. 41 (2000), 3233-3256. · Zbl 0977.82023 · doi:10.1063/1.533302
[26] M. Rudelson and R. Vershynin, The Littlewood-Offord problem and invertibility of random matrices , Adv. Math. 218 (2008), 600-633. · Zbl 1139.15015 · doi:10.1016/j.aim.2008.01.010
[27] M. Rudelson and R. Vershynin, Smallest singular value of a random rectangular matrix , Comm. Pure Appl. Math. 62 (2009), 1707-1739. · Zbl 1183.15031 · doi:10.1002/cpa.20294
[28] M. Rudelson and R. Vershynin, “Non-asymptotic theory of random matrices: Extreme singular values” in Proceedings of the International Congress of Mathematicians, III , Hindustan Book Agency, New Delhi, 2010, 1576-1602. · Zbl 1227.60011
[29] M. Rudelson and R. Vershynin, Hanson-Wright inequality and sub-Gaussian concentration , Electron. Commun. Probab. 18 (2013), no. 82. · Zbl 1329.60056 · doi:10.1214/ECP.v18-2865
[30] T. Tao and V. Vu, On random \(\pm1\) matrices: Singularity and determinant , Random Structures Algorithms 28 (2006), 1-23. · Zbl 1086.60008 · doi:10.1002/rsa.20109
[31] T. Tao and V. Vu, Random matrices: Universality of ESDs and the circular law , with an appendix by M. Krishnapur, Ann. Probab. 38 (2010), 2023-2065. · Zbl 1203.15025 · doi:10.1214/10-AOP534
[32] T. Tao and V. Vu, Random matrices: Universal properties of eigenvectors , Random Matrices Theory Appl. 1 (2012), no. 1150001. · Zbl 1248.15031 · doi:10.1142/S2010326311500018
[33] M. Timme, F. Wolf, and T. Geisel, Topological speed limits to network synchronization , Phys. Rev. Lett. 92 , no. 7 (2004), art. ID 074101.
[34] L. V. Tran, V. H. Vu, and K. Wang, Sparse random graphs: Eigenvalues and eigenvectors , Random Structures Algorithms 42 (2013), 110-134. · Zbl 1257.05089 · doi:10.1002/rsa.20406
[35] R. Vershynin, “Introduction to the non-asymptotic analysis of random matrices” in Compressed Sensing , Cambridge Univ. Press, Cambridge, 2012, 210-268. · doi:10.1017/CBO9780511794308.006
[36] V. Vu and K. Wang, Random weighted projections, random quadratic forms and random eigenvectors , Random Structures Algorithms, published electronically 2 July 2014. · Zbl 1384.60029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.