# zbMATH — the first resource for mathematics

Intermittency for branching random walk in Pareto environment. (English) Zbl 1352.60133
The authors consider a branching random walk on an integer lattice $$\mathbb Z^d$$, where the branching rates are given by i.i.d. Pareto random variables. At time $$0$$, start with a single particle at the origin. The particle performs a continuous-time, nearest neighbor symmetric random walk on $$\mathbb Z^d$$. When located at $$z\in\mathbb Z^d$$, the particle splits into two new particles at rate $$\xi(z)$$, where $$\{\xi(z): z\in\mathbb Z^d\}$$ are i.i.d. random variables with $$\mathbb P[\xi(z) > x] = x^{-\alpha}$$, $$x\geq 1$$. The new particles behave in the same way as the original one. Let $$N(z,t)$$ be the number of particles at site $$z\in\mathbb Z^d$$ and time $$t\geq 0$$. The main result obtained by the authors states that the process $M_T(z,t) := \frac{1}{a(T) T} \log_+ N([r(T) z], tT), \quad z\in\mathbb R^d, \; t\geq 0,$ with $a(T) = \left(\frac T {\log T}\right)^{\frac{d}{\alpha-d}}, \quad r(T) = \left(\frac T {\log T}\right)^{\frac{\alpha}{\alpha-d}},$ can be approximated, for large $$T$$, by a certain process $$m_T(z,t)$$ which has an elegant description in terms of growing “lilypads”. From this result, the authors derive a number of consequences including an asymptotic description of the support of the branching random walk.

##### MSC:
 60K37 Processes in random environments 60J80 Branching processes (Galton-Watson, birth-and-death, etc.) 60G50 Sums of independent random variables; random walks
Full Text:
##### References:
 [1] Albeverio, S., Bogachev, L. V., Molchanov, S. A. and Yarovaya, E. B. (2000). Annealed moment Lyapunov exponents for a branching random walk in a homogeneous random branching environment. Markov Process. Related Fields 6 473-516. · Zbl 0979.60079 [2] Baillon, J.-B., Clément, Ph., Greven, A. and den Hollander, F. (1993). A variational approach to branching random walk in random environment. Ann. Probab. 21 290-317. · Zbl 0770.60088 [3] Bartsch, C., Gantert, N. and Kochler, M. (2009). Survival and growth of a branching random walk in random environment. Markov Process. Related Fields 15 525-548. · Zbl 1196.60143 [4] Birkner, M., Geiger, J. and Kersting, G. (2005). Branching processes in random environment-a view on critical and subcritical cases. In Interacting Stochastic Systems 269-291. Springer, Berlin. · Zbl 1084.60062 [5] Comets, F., Menshikov, M. V. and Popov, S. Yu. (1998). One-dimensional branching random walk in a random environment: A classification. Markov Process. Related Fields 4 465-477. · Zbl 0938.60081 [6] Comets, F. and Popov, S. (2007). On multidimensional branching random walks in random environment. Ann. Probab. 35 68-114. · Zbl 1114.60084 [7] Comets, F. and Popov, S. (2007). Shape and local growth for multidimensional branching random walks in random environment. ALEA Lat. Am. J. Probab. Math. Stat. 3 273-299. · Zbl 1162.60348 [8] Comets, F. and Yoshida, N. (2011). Branching random walks in space-time random environment: Survival probability, global and local growth rates. J. Theoret. Probab. 24 657-687. · Zbl 1235.60146 [9] Dawson, D. and Fleischmann, K. (1983). On spatially homogeneous branching processes in a random environment. Math. Nachr. 113 249-257. · Zbl 0533.60091 [10] Gantert, N., Müller, S., Popov, S. and Vachkovskaia, M. (2010). Survival of branching random walks in random environment. J. Theoret. Probab. 23 1002-1014. · Zbl 1204.60087 [11] Gärtner, J. and König, W. (2005). The parabolic Anderson model. In Interacting Stochastic Systems 153-179. Springer, Berlin. · Zbl 1111.82011 [12] Gärtner, J. and Molchanov, S. A. (1990). Parabolic problems for the Anderson model. I. Intermittency and related topics. Comm. Math. Phys. 132 613-655. · Zbl 0711.60055 [13] Greven, A. and den Hollander, F. (1992). Branching random walk in random environment: Phase transitions for local and global growth rates. Probab. Theory Related Fields 91 195-249. · Zbl 0744.60079 [14] Gün, O., König, W. and Sekulović, O. (2013). Moment asymptotics for branching random walks in random environment. Electron. J. Probab. 18 no. 63, 18. · Zbl 1286.60086 [15] Harris, S. C. and Roberts, M. I. (2011). The many-to-few lemma and multiple spines. Preprint. Available at . arXiv:1106.4761 · Zbl 1361.60076 [16] Hu, Y. and Yoshida, N. (2009). Localization for branching random walks in random environment. Stochastic Process. Appl. 119 1632-1651. · Zbl 1161.60341 [17] Ikeda, N., Nagasawa, M. and Watanabe, S. (1969). Branching Markov processes. III. J. Math. Kyoto Univ. 9 95-160. · Zbl 0233.60070 [18] König, W. (2015). The parabolic Anderson model. Preprint. Available at . [19] König, W., Lacoin, H., Mörters, P. and Sidorova, N. (2009). A two cities theorem for the parabolic Anderson model. Ann. Probab. 37 347-392. · Zbl 1183.60024 [20] Lawler, G. F. and Limic, V. (2010). Random Walk : A Modern Introduction. Cambridge Studies in Advanced Mathematics 123 . Cambridge Univ. Press, Cambridge. · Zbl 1210.60002 [21] Mörters, P. (2011). The parabolic Anderson model with heavy-tailed potential. In Surveys in Stochastic Processes 67-85. Eur. Math. Soc., Zürich. · Zbl 1238.60115 [22] Mörters, P., Ortgiese, M. and Sidorova, N. (2011). Ageing in the parabolic Anderson model. Ann. Inst. Henri Poincaré Probab. Stat. 47 969-1000. · Zbl 1268.82031 [23] Müller, S. (2008). A criterion for transience of multidimensional branching random walk in random environment. Electron. J. Probab. 13 1189-1202. · Zbl 1191.60124 [24] Müller, S. (2008). Recurrence and transience for branching random walks in an I.I.D. random environment. Markov Process. Related Fields 14 115-130. · Zbl 1148.60081 [25] Smith, W. L. and Wilkinson, W. E. (1969). On branching processes in random environments. Ann. Math. Statist. 40 814-827. · Zbl 0184.21103 [26] van der Hofstad, R., Mörters, P. and Sidorova, N. (2008). Weak and almost sure limits for the parabolic Anderson model with heavy tailed potentials. Ann. Appl. Probab. 18 2450-2494. · Zbl 1204.60061 [27] Wilkinson, W. E. (1968). Branching processes in stochastic environments. PhD thesis, Univ. of North Carolina at Chapel Hill, 1967. [28] Yoshida, N. (2008). Central limit theorem for branching random walks in random environment. Ann. Appl. Probab. 18 1619-1635. · Zbl 1145.60054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.