×

Numerical studies for fractional functional differential equations with delay based on BDF-type shifted Chebyshev approximations. (English) Zbl 1352.65173

Summary: Fractional functional differential equations with delay (FDDEs) have recently played a significant role in modeling of many real areas of sciences such as physics, engineering, biology, medicine, and economics. FDDEs often cannot be solved analytically so the approximate and numerical methods should be adapted to solve these types of equations. In this paper we consider a new method of backward differentiation formula- (BDF-) type for solving FDDEs. This approach is based on the interval approximation of the true solution using the Clenshaw and Curtis formula that is based on the truncated shifted Chebyshev polynomials. It is shown that the new approach can be reformulated in an equivalent way as a Runge-Kutta method and the Butcher tableau of this method is given. Estimation of local and global truncating errors is deduced and this leads to the proof of the convergence for the proposed method. Illustrative examples of FDDEs are included to demonstrate the validity and applicability of the proposed approach.

MSC:

65L03 Numerical methods for functional-differential equations
34A08 Fractional ordinary differential equations
34K37 Functional-differential equations with fractional derivatives
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Almeida, R.; Malinowska, A. B., A fractional calculus of variations for multiple integral with application to vibrating string, Journal of Mathematical Physics, 51, 1-12 (2010) · Zbl 1309.49003
[2] Torvik, P. J.; Bagley, R. L., On the appearance of the fractional derivative in the behavior of real materials, Journal of Applied Mechanics, 51, 2, 294-298 (1984) · Zbl 1203.74022 · doi:10.1115/1.3167615
[3] Kilbas, A.; Srivastava, H.; Trujillo, J., Theory and Applications of Fractional Differential Equations (2006), North-Holland Mathematics Studies · Zbl 1092.45003
[4] Sabatier, J.; Agrwal, O. P.; Machado, J. A. T., Advances in Fractional Calculus (2007), Springer · Zbl 1116.00014
[5] Doha, E. H.; Bhrawy, A. H.; Ezz-Eldien, S. S., Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations, Applied Mathematical Modelling, 35, 12, 5662-5672 (2011) · Zbl 1228.65126 · doi:10.1016/j.apm.2011.05.011
[6] Inc, M., The approximate and exact solutions of the space- and time-fractional Burgers equations with initial conditions by variational iteration method, Journal of Mathematical Analysis and Applications, 345, 1, 476-484 (2008) · Zbl 1146.35304 · doi:10.1016/j.jmaa.2008.04.007
[7] Jafari, H.; Daftardar-Gejji, V., Solving linear and nonlinear fractional diffusion and wave equations by Adomian decomposition, Applied Mathematics and Computation, 180, 2, 488-497 (2006) · Zbl 1102.65135 · doi:10.1016/j.amc.2005.12.031
[8] Khader, M. M., On the numerical solutions for the fractional diffusion equation, Communications in Nonlinear Science and Numerical Simulation, 16, 6, 2535-2542 (2011) · Zbl 1221.65263 · doi:10.1016/j.cnsns.2010.09.007
[9] Khader, M. M.; El Danaf, T. S.; Hendy, A. S., A computational matrix method for solving systems of high order fractional differential equations, Applied Mathematical Modelling, 37, 6, 4035-4050 (2013) · Zbl 1302.65176 · doi:10.1016/j.apm.2012.08.009
[10] Meerschaert, M. M.; Tadjeran, C., Finite difference approximations for fractional advection-dispersion flow equations, Journal of Computational and Applied Mathematics, 172, 1, 65-77 (2004) · Zbl 1126.76346 · doi:10.1016/j.cam.2004.01.033
[11] Lukashchuk, S. Y., An approximate solution method for ordinary fractional differential equations with the Riemann-Liouville fractional derivatives, Communications in Nonlinear Science and Numerical Simulation, 19, 2, 390-400 (2014) · Zbl 1344.34018 · doi:10.1016/j.cnsns.2013.06.021
[12] Bellen, A.; Zennaro, M., Numerical Methods for Delay Differential Equations (2003), Oxford, UK: Oxford Science Publications, Clarendon Press, Oxford, UK · Zbl 0749.65042
[13] Cooke, R.; Bellman, K. L., Differential—Difference Equations (1963), New York, NY, USA: Academic Press, New York, NY, USA · Zbl 0105.06402
[14] Driver, R., Ordinary and Delay Differential Equations (1977), Berlin, Germany: Springer, Berlin, Germany · Zbl 0374.34001
[15] Hale, J., Theory of Functional Differential Equations (1977), New York, NY, USA: Springer, New York, NY, USA · Zbl 0352.34001
[16] Pimenov, V. G.; Tashirova, E. E., Numerical methods for solving a hereditary equation of hyperbolic type, Proceedings of the Steklov Institute of Mathematics, 281, 1, 126-136 (2013) · Zbl 1287.65065 · doi:10.1134/s008154381305012x
[17] Dehghan, M.; Salehi, R., Solution of a nonlinear time-delay model in biology via semi-analytical approaches, Computer Physics Communications, 181, 7, 1255-1265 (2010) · Zbl 1219.65062 · doi:10.1016/j.cpc.2010.03.014
[18] MacDonald, N., Biological Delay Systems: Linear Stability Theory (1989), Cambridge University Press · Zbl 0669.92001
[19] Bhalekar, S., Dynamical analysis of fractional order Uçar prototype delayed system Sachin Bhalekar, Signal, Image and Video Processing, 6, 3, 513-519 (2012) · doi:10.1007/s11760-012-0330-4
[20] Bhalekar, S.; Daftardar-Gejji, V.; Baleanu, D.; Magin, R., Fractional Bloch equation with delay, Computers and Mathematics with Applications, 61, 5, 1355-1365 (2011) · Zbl 1217.34123 · doi:10.1016/j.camwa.2010.12.079
[21] Magin, R. L., Fractional calculus models of complex dynamics in biological tissues, Computers and Mathematics with Applications, 59, 5, 1586-1593 (2010) · Zbl 1189.92007 · doi:10.1016/j.camwa.2009.08.039
[22] Si-Ammour, A.; Djennoune, S.; Bettayeb, M., A sliding mode control for linear fractional systems with input and state delays, Communications in Nonlinear Science and Numerical Simulation, 14, 5, 2310-2318 (2009) · Zbl 1221.93048 · doi:10.1016/j.cnsns.2008.05.011
[23] Wang, D.; Yu, J., Chaos in the fractional order logistic delay system, Journal of Electronic Science and Technology, 6, 3, 225-229 (2008)
[24] Yang, Z.; Cao, J., Initial value problems for arbitrary order fractional differential equations with delay, Communications in Nonlinear Science and Numerical Simulation, 18, 11, 2993-3005 (2013) · Zbl 1329.34122 · doi:10.1016/j.cnsns.2013.03.006
[25] Chen, F.; Zhou, Y., Attractivity of fractional functional differential equations, Computers and Mathematics with Applications, 62, 3, 1359-1369 (2011) · Zbl 1228.34017 · doi:10.1016/j.camwa.2011.03.062
[26] Lakshmikantham, V., Theory of fractional functional differential equations, Nonlinear Analysis, Theory, Methods and Applications, 69, 10, 3337-3343 (2008) · Zbl 1162.34344 · doi:10.1016/j.na.2007.09.025
[27] Krol, K., Asymptotic properties of fractional delay differential equations, Applied Mathematics and Computation, 218, 5, 1515-1532 (2011) · Zbl 1239.34095 · doi:10.1016/j.amc.2011.04.059
[28] Bhalekar, S.; Daftardar-Gejji, V., A predictor-corrector scheme for solving nonlinear delay differential equations of fractional order, Journal of Fractional Calculus and Applications, 1, 5, 1-9 (2011) · Zbl 1488.65209
[29] Wang, Z., A numerical method for delayed fractional-order differential equations, Journal of Applied Mathematics, 2013 (2013) · Zbl 1266.65118 · doi:10.1155/2013/256071
[30] Wang, Z.; Huang, X.; Zhou, J., A numerical method for delayed fractional-order differential equations: based on G-L definition, Applied Mathematics and Information Sciences, 7, 2, 525-529 (2013) · doi:10.12785/amis/072l22
[31] Morgado, M. L.; Ford, N. J.; Lima, P. M., Analysis and numerical methods for fractional differential equations with delay, Journal of Computational and Applied Mathematics, 252, 159-168 (2012) · Zbl 1291.65214 · doi:10.1016/j.cam.2012.06.034
[32] Moghaddam, B. P.; Mostaghim, Z. S., A novel matrix approach to fractional finite difference for solving models based on nonlinear fractional delay differential equations, Ain Shams Engineering Journal, 5, 2, 585-594 (2014) · doi:10.1016/j.asej.2013.11.007
[33] Moghaddam, B. P.; Mostaghim, Z. S., A numerical method based on finite difference for solving fractional delay differential equations, Journal of Taibah University for Science, 7, 3, 120-127 (2013) · doi:10.1016/j.jtusci.2013.07.002
[34] Ramos, H.; Vigo-Aguiar, J., A fourth-order Runge-Kutta method based on BDF-type Chebyshev approximations, Journal of Computational and Applied Mathematics, 204, 1, 124-136 (2007) · Zbl 1113.65073 · doi:10.1016/j.cam.2006.04.033
[35] Diethelm, K.; Ford, N. J., Analysis of fractional differential equations, Journal of Mathematical Analysis and Applications, 265, 2, 229-248 (2002) · Zbl 1014.34003 · doi:10.1006/jmaa.2000.7194
[36] Miller, K. S.; Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations (1993), New York, NY, USA: John Wiley & Sons, New York, NY, USA · Zbl 0789.26002
[37] Podlubny, I., Fractional Differential Equations (1999), New York, NY, USA: Academic Press, New York, NY, USA · Zbl 0918.34010
[38] Samko, S.; Kilbas, A.; Marichev, O. I., Fractional Integrals and Derivatives: Theory and Applications (1993), Yverdon, The Netherlands: Gordon and Breach, Yverdon, The Netherlands · Zbl 0818.26003
[39] Funaro, D., Polynomial Approximation of Differential Equations (1992), New York, NY, USA: Springer, New York, NY, USA · Zbl 0774.41010
[40] Clenshaw, C. W.; Curtis, A. R., A method for numerical integration on an automatic computer, Numerische Mathematik, 2, 1, 197-205 (1960) · Zbl 0093.14006 · doi:10.1007/BF01386223
[41] Butcher, J. C., Numerical Methods for Ordinary Differential Equations (2008), New York, NY, USA: John Wiley & Sons, New York, NY, USA · Zbl 1167.65041
[42] Hairer, E.; Nrsett, S. P.; Wanner, G., Solving Ordinary Differential Equations I Nonstiff Problems (2008), Berlin, Germany: Springer, Berlin, Germany
[43] Le Veque, R. J., Finite Difference Methods for Differential Equations (2005), University of Washington
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.