×

Multiplicity of analytic hypersurface singularities under bi-Lipschitz homeomorphisms. (English) Zbl 1353.14005

The authors consider a metric analogue of Zariski’s multiplicity question: have two reduced hypersurface singularities, which are bi-Lipschitz \(\mathcal V\)-equivalent, the same multiplicity? They first show that the answer is yes if and only if the result holds for irreducible homogeneous polynomials. As corollary they obtain a positive answer for the case that all components of the tangent cone have isolated singularities, and for surface singularities without any restriction.

MSC:

14B05 Singularities in algebraic geometry
32S50 Topological aspects of complex singularities: Lefschetz theorems, topological classification, invariants

References:

[1] L.Birbrair, A.Fernandes and V.Grandjean, ‘Thin-thick decomposition for real definable isolated singularities’, Preprint, 2015, http://arxiv.org/pdf/1505.07309v1.pdf.
[2] L.Birbrair, A.Fernandes, D. T.Lê and J. ESampaio, ‘Lipschitz regular complex algebraic sets are smooth’, Proc. Amer. Math. Soc., 144 (2016) 983-987. · Zbl 1338.14008
[3] J. F.Bobadilla, ‘Answers to some equisingularity questions’, Invent. Math., 161 (2005) 657-675. · Zbl 1082.32019
[4] E. M.Chirka, Complex analytic sets (Kluwer Academic Publishers, Dordrecht, 1989). · Zbl 0683.32002
[5] G.Comte, ‘Multiplicity of complex analytic sets and bi‐Lipschitz maps’, Real analytic and algebraic singularities (Nagoya/Sapporo/Hachioji, 1996), Pitman Research Notes in Mathematics Series 381 (1998) 182-188. · Zbl 0982.32026
[6] A.Dimca, Singularities and topology of hypersurfaces (Springer, New York, 1992). · Zbl 0753.57001
[7] R. N.Draper, ‘Intersection theory in analytic geometry’, Math. Ann., 180 (1969) 175-204. · Zbl 0157.40502
[8] R.Ephraim, ‘\(C^1\) preservation of multiplicity’, Duke Math. J., 43 (1976) 797-803. · Zbl 0352.14017
[9] C.Eyral, ‘Zariski’s multiplicity questions: a survey’, New Zealand J. Math., 36 (2007) 253-276. · Zbl 1185.32018
[10] Y.‐N.Gau and JLipman, ‘Differential invariance of multiplicity on analytic varieties’, Invent. Math., 73 (1983) 165-188. · Zbl 0498.32003
[11] G. M.Greuel, ‘Constant Milnor number implies constant multiplicity for quasihomogeneous singularities’, Manuscripta Math., 56 (1986) 159-166. · Zbl 0594.32021
[12] I. N.Iomdin, ‘Complex surfaces with a one‐dimensional set of singularities’, Siberian Math. J., 15 (1974) 748-762. (Translated from Sibirskii Matematicheskii Zhurnal 15 (1974) 1061-1082.) · Zbl 0325.32003
[13] K.Kurdyka and G.Raby, ‘Densité des ensembles sous‐analytiques’, Ann. Inst. Fourier (Grenoble), 39 (1989) 753-771. · Zbl 0673.32015
[14] D. T.Lê, ‘Calcul du nombre de cycles évanouissants d’une hypersurface complexe’, Ann. Inst. Fourier (Grenoble), 23 (1973) 261-270 (French). · Zbl 0293.32013
[15] D. T.Lê, ‘Topologie des singularités des hypersurfaces complexes’, Asterisque (Singularités a Cargèse), 7 and 8 (1973) 171-182 (French). · Zbl 0331.32009
[16] T. D.Lê, Ensembles analytiques complexes avec lieu singulier de dimension un (D’Apres I. N. Iomdine), Seminar on Singularities (Paris, 1976/1977), Publ. Math. Univ. Paris VII (1980) 87-95.
[17] D. B.Massey, Lê cycles and hypersurfaces singularities, Lecture Notes in Mathematics 1615 (Springer, Berlin, 1995). · Zbl 0835.32002
[18] D. B.Massey, ‘Lê’s work on hypersurface singularities’, Preprint, 2007, http://www.matcuer.unam.mx/ singularities/Notas/Massey1.pdf.
[19] J.Milnor, Singular points of complex hypersurfaces (Princeton University Press, Princeton, NJ, 1968). · Zbl 0184.48405
[20] W.Neumann and A.Pichon, ‘Lipschitz geometry of complex surfaces: analytic invariants and equisingularity’, Preprint, 2014, http://arxiv.org/pdf/1211.4897v2.pdf.
[21] D. B.O’shea, ‘Topologically trivial deformations of isolated quasihomogeneous hypersurface singularities are equimultiple’, Proc. Amer. Math. Soc., 101 (1987) 260-262. · Zbl 0628.32029
[22] R.Randell, On the topology of non‐isolated singularities, Geometric Topology (Academic Press, New York, London, 1979) 445-473. · Zbl 0473.57007
[23] J. E.Sampaio, ‘Bi‐Lipschitz homeomorphic subanalytic sets have bi‐Lipschitz homeomorphic tangent cones’, Selecta Math. (N.S.), 22 (2016) 553-559. · Zbl 1338.32008
[24] D.Trotman, ‘Multiplicity as a \(C^1\) invariant’, Real analytic and algebraic singularities (ed. T. Fukuda et al.), Pitman Research Notes in Mathematics Series 381 (Harlow, Longman, 1998) 215-221. · Zbl 0921.32013
[25] H.Whitney, Complex analytic varieties (Addison‐Wesley Publishing Company, California, 1972). · Zbl 0265.32008
[26] O.Zariski, ‘Some open questions in the theory of singularities’, Bull. Amer. Math. Soc., 77 (1971) 481-491. · Zbl 0236.14002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.