Unobstructed symplectic packing for tori and hyper-Kähler manifolds. (English) Zbl 1353.53055

J. Topol. Anal. 8, No. 4, 589-626 (2016); erratum ibid. 11, No. 1, 249-250 (2019).
An almost complex structure \(J\) and a differential \(2\)-form \(\omega\) on a smooth manifold \(M\) are said to be compatible if \(\omega(\cdot,J\cdot)\) is a \(J\)-invariant Riemannian metric on \(M\). Any closed differential \(2\)-form \(\omega\) compatible with an almost complex structure \(J\) is automatically symplectic. The compatibility between a complex structure \(J\) and a symplectic form \(\omega\) means that \(\omega(\cdot,J\cdot)+i\omega(\cdot,\cdot)\) is a Kähler metric on \(M\). A symplectic form \(\omega\) is called Kähler, if it is compatible with some complex structure on \(M\), and a complex structure is said to be of Kähler type if it is compatible with some symplectic form. A hyper-Kähler manifold \(M\) is a manifold equipped with three complex structures \(I_i\) satisfying the quaternionic relations and three symplectic forms \(\omega_i\) compatible, respectively, with \(I_i\), so that the three Riemannian metrics \(\omega_i(\cdot,I_i\cdot)\) coincide.
Such a collection of complex structures and symplectic forms on \(M\) is called a hyper-Kähler structure and is denoted by \(\mathfrak h=\{I_i,\omega_i\}\), \(i=1,2,3\). A symplectic form is hyper-Kähler and a complex structure is of hyper-Kähler type, if each of them appears in some hyper-Kähler structure. In particular, any hyper-Kähler symplectic form is Kähler and any complex structure of hyper-Kähler type is also of Kähler type. Two hyper-Kähler forms are hyper-Kähler deformation equivalent if they can be connected by a smooth path of hyper-Kähler forms. A hyper-Kähler manifold \((M,\mathfrak h)\) is called irreducible holomorphically symplectic if \(\pi_1(M)=0\) and \(\dim_{\mathbb C}H^{2,0}_I(M,\mathbb C)=1\), where \(I\) is any of the three complex structures appearing in \(\mathfrak h\) and \(H^{2,0}_I(M,\mathbb C)\) is the \((2,0)\)-part in the Hodge decomposition of \(H^{2}(M,\mathbb C)\) defined by \(I\). The irreducible holomorphically symplectic hyper-Kähler manifold is called hyper-Kähler manifold of maximum holonomy. If \((M,\omega)\), \(\dim_{\mathbb R}M=2n\), is a closed connected symplectic manifold with the symplectic volume \(\mathrm{Vol}\), then the symplectic packings of \((M,\omega)\) by balls are said to be unobstructed, if any finite collection of pairwise disjoint closed round balls in the standard symplectic \(\mathbb R^{2n}\) of total volume less than \(\mathrm{Vol}(M,\omega)\) has an open neighborhood that can be symplectically embedded into \((M,\omega)\). If \(\nu(M,\omega,V)=\frac{\sup_\alpha\mathrm{Vol}(V,\alpha\eta)}{\mathrm{Vol}(M,\omega)}\) for all \(\alpha\) such that \((V,\alpha\eta)\) admits a symplectic embedding into \((M,\omega)\), then it is said that \((M,\omega)\) is fully packed by \(k\) equal copies of \((V,\eta)\) if \(\nu(M,\omega,W)=1\), where \(W\) is a disjoint union of \(k\) equal copies of \((V,\eta)\). A complex structure \(J\) on a closed, connected manifold \(M\), \(\dim_{\mathbb C}M>l\), is called Campana simple, if the union \(\mathfrak U\) of all complex subvarieties \(Z\subset M\) satisfying \(0<\dim_{\mathbb C}Z<\dim_{\mathbb C}M\) has measure zero.
The symplectic packing problem is one of the major problems of symplectic topology. In this paper the authors use several strong results from complex geometry in order to prove the flexibility of symplectic packings by balls for all even-dimensional tori equipped with Kähler symplectic forms as well as for certain hyper-Kähler manifolds. They show that if \(M\) is a torus \(T^{2n}=\mathbb R^{2n}/\mathbb Z^{2n}\) with a Kähler form \(\omega\), or an irreducible holomorphically symplectic hyper-Kähler manifold with a hyper-Kähler symplectic form \(\omega\), then the symplectic packings of \((M,\omega)\) by balls are unobstructed.
If \((U,\eta)\), \(\dim_{\mathbb R}M=2n\), is an open, possibly disconnected, symplectic manifold, and \(V\subset U\), \(\dim_{\mathbb R}M=2n\), is a compact, possibly disconnected, submanifold of \(U\) with piecewise smooth boundary, then by a symplectic embedding of \((V,\eta)\) in \((M,\omega)\) is meant a symplectic embedding of an open neighborhood of \(V\) in \((U,\eta)\) to \((M,\omega)\). The authors prove that if \(H^2(V,\mathbb R)=0\) and \(M\), \(\dim_{\mathbb R}M=2n>4\), is either an oriented torus \(T^{2n}\) or, respectively, a closed connected oriented manifold admitting irreducible holomorphically symplectic hyper-Kähler structures, and if \(\omega_1\), \(\omega_2\) are either Kähler forms on \(T^{2n}\) or, respectively, hyper-Kähler forms on \(M\) such that \(\int_M\omega_1^n=\int_M\omega_2^n>0\) and that the cohomology classes \([\omega_1]\), \([\omega_2]\) are not proportional to rational ones, and in the hyper-Kähler case \(\omega_1\), \(\omega_2\) are hyper-Kähler deformation equivalent, then \(\nu(M,\omega_1,V)=\nu(M,\omega_2,V)\). Also, the authors show that for any Campana simple Kähler manifold, as well as for any manifold which is a limit of Campana simple manifolds in a smooth deformation, the symplectic packings by balls are unobstructed.


53C26 Hyper-Kähler and quaternionic Kähler geometry, “special” geometry
53D05 Symplectic manifolds (general theory)
Full Text: DOI arXiv


[1] 1. E. Amerik and M. Verbitsky, Teichmuller space for hyper-Kahler and symplectic structures, J. Geom. Phys.97 (2015) 44-50. genRefLink(16, ’S1793525316500229BIB001’, ’10.1016 · Zbl 1327.53061
[2] 2. A. Beauville, Varietes Kähleriennes dont la première classe de Chern est nulle, J. Differential Geometry18 (1983) 755-782. · Zbl 0537.53056
[3] 3. A. Besse, Einstein Manifolds (Springer-Verlag, 1987). genRefLink(16, ’S1793525316500229BIB003’, ’10.1007
[4] 4. F. A. Bogomolov, On the decomposition of Kähler manifolds with trivial canonical class, Math. USSR-Sb.22 (1974) 580-583. genRefLink(16, ’S1793525316500229BIB004’, ’10.1070 · Zbl 0304.32016
[5] 5. F. Bogomolov, Hamiltonian Kähler manifolds, Sov. Math. Dokl.19 (1978) 1462-1465. · Zbl 0418.53026
[6] 6. E. Calabi, On Kähler manifolds with vanishing canonical class, in Algebraic Geometry and Topology. A Symposium in Honor of S. Lefschetz (Princeton Univ. Press, 1957), pp. 78-89. genRefLink(16, ’S1793525316500229BIB006’, ’10.1515
[7] 7. F. Campana, Isotrivialité de certaines familles Kählériennes de variétés non projectives, Math. Z.252 (2006) 147-156. genRefLink(16, ’S1793525316500229BIB007’, ’10.1007
[8] 8. F. Campana, J.-P. Demailly and M. Verbitsky, Compact Kähler 3-manifolds without non-trivial subvarieties, Algebr. Geom.1 (2014) 131-139. genRefLink(16, ’S1793525316500229BIB008’, ’10.14231
[9] 9. F. Catanese, A superficial working guide to deformations and moduli, in Handbook of Moduli, Vol. I (Int. Press, 2013), pp. 161-215. · Zbl 1322.14002
[10] 10. J.-P. Demailly and M. Paun, Numerical characterization of the Kähler cone of a compact Kähler manifold, Ann. of Math.159 (2004) 1247-1274. genRefLink(16, ’S1793525316500229BIB010’, ’10.4007 · Zbl 1064.32019
[11] 11. S. K. Donaldson, Two-forms on four-manifolds and elliptic equations, in Inspired by S. S. Chern (World Scientific, 2006), pp. 153-172. [Abstract] · Zbl 1140.58018
[12] 12. A. Douady, Le problème des modules pour les sous-espaces analytiques compacts d’un espace analytique donné, Ann. de l’inst. Fourier16 (1966) 1-95. genRefLink(16, ’S1793525316500229BIB012’, ’10.5802
[13] 13. A. Douady, Le problème des modules pour les variétés analytiques complexes (d’après Masatake Kuranishi), in Séminaire Bourbaki, Vol. 9, Exp. No. 277 (Soc. Math. France, 1995), 7-13.
[14] 14. J. Fricke and L. Habermann, On the geometry of moduli spaces of symplectic structures, Manuscripta Math.109 (2002) 405-417. genRefLink(16, ’S1793525316500229BIB014’, ’10.1007 · Zbl 1027.53110
[15] 15. A. Fujiki, Closedness of the Douady spaces of compact Kähler spaces, Publ. Res. Inst. Math. Sci.14 (1978/79) 1-52. genRefLink(16, ’S1793525316500229BIB015’, ’10.2977 · Zbl 0409.32016
[16] 16. A. Fujiki, Countability of the Douady space of a complex space, Japanese J. Math.5 (1079) 431-447. · Zbl 0437.32005
[17] 17. A. Fujiki, On the de Rham cohomology group of a compact Kähler symplectic manifold, Adv. Stud. Pure Math.10 (1987) 105-165. · Zbl 0654.53065
[18] 18. R. Goodman and N. R. Wallach, Symmetry, Representations, and Invariants, (Springer, 2009). genRefLink(16, ’S1793525316500229BIB018’, ’10.1007
[19] 19. M. Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math.82 (1985) 307-347. genRefLink(16, ’S1793525316500229BIB019’, ’10.1007 · Zbl 0592.53025
[20] 20. R. S. Hamilton, The inverse function theorem of Nash and Moser, Bull. AMS7 (1982) 65-222. genRefLink(16, ’S1793525316500229BIB020’, ’10.1090
[21] 21. D. Huybrechts, Compact hyper-Kähler manifolds, in Calabi-Yau Manifolds and Related Geometries (Nordfjordeid, 2001) (Springer-Verlag, 2003), pp. 161-225. genRefLink(16, ’S1793525316500229BIB021’, ’10.1007
[22] 22. D. Kleinbock, N. Shah and A. Starkov, Dynamics of subgroup actions on homogeneous spaces of Lie groups and applications to number theory, in Handbook of Dynamical Systems, Vol. 1A (North-Holland, 2002), pp. 813-930. genRefLink(16, ’S1793525316500229BIB022’, ’10.1016 · Zbl 1050.22026
[23] 23. K. Kodaira, Complex Manifolds and Deformation of Complex Structures (Springer-Verlag, 1986). genRefLink(16, ’S1793525316500229BIB023’, ’10.1007 · Zbl 0581.32012
[24] 24. K. Kodaira, D. C. Spencer, On deformations of complex analytic structures. III. Stability theorems for complex structures, Ann. of Math.71 (1960) 43-76. genRefLink(16, ’S1793525316500229BIB024’, ’10.2307 · Zbl 0128.16902
[25] 25. M. Kuranishi, On the locally complete families of complex analytic structures, Ann. of Math.75 (1962) 536-577. genRefLink(16, ’S1793525316500229BIB025’, ’10.2307 · Zbl 0106.15303
[26] 26. J. Latschev, D. McDuff and F. Schlenk, The Gromov width of 4-dimensional tori, Geom. Topol.17 (2013) 2813-2853. genRefLink(16, ’S1793525316500229BIB026’, ’10.2140 · Zbl 1277.57024
[27] 27. D. McDuff and L. Polterovich, Symplectic packings and algebraic geometry. With an appendix by Yael Karshon, Invent. Math.115 (1994) 405-434. genRefLink(16, ’S1793525316500229BIB027’, ’10.1007 · Zbl 0833.53028
[28] 28. D. McDuff and D. Salamon, Introduction to Symplectic Topology, 2nd edn. (Oxford Univ. Press, 1998). · Zbl 0844.58029
[29] 29. D. W. Morris, Ratner’s Theorems on Unipotent Flows (Univ. of Chicago Press, 2005). · Zbl 1069.22003
[30] 30. J. Moser, On the volume elements on a manifold, Trans. AMS120 (1965) 288-294. genRefLink(16, ’S1793525316500229BIB030’, ’10.1090
[31] 31. K. G. O’Grady, Desingularized moduli spaces of sheaves on a K3, J. Reine Angew. Math.512 (1999) 49-117. genRefLink(16, ’S1793525316500229BIB031’, ’10.1515 · Zbl 0928.14029
[32] 32. K. G. O’Grady, A new six-dimensional irreducible symplectic variety, J. Alg. Geom.12 (2003) 435-505. genRefLink(16, ’S1793525316500229BIB032’, ’10.1090 · Zbl 1068.53058
[33] 33. A. L. Onishchik and E. B. Vinberg, Lie Groups and Algebraic Groups (Springer-Verlag, 1990). genRefLink(16, ’S1793525316500229BIB033’, ’10.1007 · Zbl 0722.22004
[34] 34. D. L. Ragozin, A normal subgroup of a semisimple Lie group is closed, Proc. of AMS32 (1972) 632-633. · Zbl 0231.22012
[35] 35. M. Ratner, Raghunathan’s topological conjecture and distributions of unipotent flows, Duke Math. J.63 (1991) 235-280. genRefLink(16, ’S1793525316500229BIB035’, ’10.1215 · Zbl 0733.22007
[36] 36. R. Remmert, Projektionen analytischer Mengen, Math. Ann.130 (1956) 410-441. genRefLink(16, ’S1793525316500229BIB036’, ’10.1007
[37] 37. N. A. Shah, Uniformly distributed orbits of certain flows on homogeneous spaces, Math. Ann.289 (1991) 315-333. genRefLink(16, ’S1793525316500229BIB037’, ’10.1007 · Zbl 0702.22014
[38] 38. M. Spivak, Calculus on Manifolds. A Modern Approach to Classical Theorems of Advanced Calculus (W. A. Benjamin, 1965). · Zbl 0141.05403
[39] 39. G. Tian, Smoothness of the universal deformation space of compact Calabi-Yau manifolds and its Petersson-Weil metric, in Mathematical Aspects of String Theory (San Diego, Calif., 1986) (World Scientific, 1987), pp. 629-646. [Abstract]
[40] 40. A. N. Todorov, The Weil-Petersson geometry of the moduli space of SU(n) (Calabi-Yau) manifolds. I, Comm. Math. Phys.126 (1989) 325-346. genRefLink(16, ’S1793525316500229BIB040’, ’10.1007 · Zbl 0688.53030
[41] 41. M. Verbitsky, Hyper-Kähler embeddings and holomorphic symplectic geometry II, Geom. Funct. Anal.5 (1995) 92-104. genRefLink(16, ’S1793525316500229BIB041’, ’10.1007
[42] 42. M. Verbitsky, Deformations of trianalytic subvarieties of hyper-Kähler manifolds, Selecta Math.4 (1998) 447-490. genRefLink(16, ’S1793525316500229BIB042’, ’10.1007 · Zbl 0923.32019
[43] 43. M. Verbitsky, A global Torelli theorem for hyper-Kähler manifolds, Duke Math. J.162 (2013) 2929-2986. genRefLink(16, ’S1793525316500229BIB043’, ’10.1215 · Zbl 1295.53042
[44] 44. M. Verbitsky, Ergodic complex structures on hyper-Kähler manifolds, arXiv:1306.1498. · Zbl 1332.53092
[45] 45. M. Verbitsky, Teichmüller spaces, ergodic theory and global Torelli theorem, arXiv:1404.3847, to appear in Proc. of the Int. Congress of Mathematicians, Vol. II (Seoul 2014), pp. 793-813. · Zbl 1373.32011
[46] 46. C. Voisin, Hodge Theory and Complex Algebraic Geometry I, II (Cambridge Univ. Press, 2002). genRefLink(16, ’S1793525316500229BIB046’, ’10.1017 · Zbl 1032.14001
[47] 47. P. B. Yale, Automorphisms of the Complex Numbers, Math. Magazine39 (1966) 135-141. genRefLink(16, ’S1793525316500229BIB047’, ’10.2307 · Zbl 0156.27502
[48] 48. S. T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math.31 (1978) 339-411. genRefLink(16, ’S1793525316500229BIB048’, ’10.1002 · Zbl 0369.53059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.