Muñoz Grajales, Juan Carlos Error analysis of an implicit spectral scheme applied to the Schrödinger-Benjamin-Ono system. (English) Zbl 1353.65096 Int. J. Differ. Equ. 2016, Article ID 6930758, 12 p. (2016). Summary: We develop error estimates of the semidiscrete and fully discrete formulations of a Fourier-Galerkin numerical scheme to approximate solutions of a coupled nonlinear Schrödinger-Benjamin-Ono system that describes the motion of two fluids with different densities under capillary-gravity waves in a deep water regime. The accuracy of the numerical solver is checked using some exact travelling wave solutions of the system. Cited in 1 Document MSC: 65M15 Error bounds for initial value and initial-boundary value problems involving PDEs 35Q55 NLS equations (nonlinear Schrödinger equations) 65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs 65M20 Method of lines for initial value and initial-boundary value problems involving PDEs 76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction Keywords:error estimates; semidiscrete; fully discrete; Fourier-Galerkin numerical scheme; coupled nonlinear Schrödinger-Benjamin-Ono system; deep water; capillary-gravity waves; travelling wave solutions × Cite Format Result Cite Review PDF Full Text: DOI OA License References: [1] Funakoshi, M.; Oikawa, M., The resonant interaction between a long internal gravity wave and a surface gravity wave packet, Journal of the Physical Society of Japan, 52, 6, 1982-1995 (1983) · doi:10.1143/jpsj.52.1982 [2] Karpman, V. I., On the dynamics of sonic-langmuir solitons, Physica Scripta, 11, 5, 263-265 (1975) · doi:10.1088/0031-8949/11/5/003 [3] Djordjevic, V.; Redekoop, L., On two-dimensional packet of capillary-gravity waves, Journal of Fluid Mechanics, 79, 703-714 (1977) · Zbl 0351.76016 [4] Grimshaw, R. H., The modulation of an internal gravity-wave packet, and the resonance with the mean motion, Studies in Applied Mathematics, 56, 3, 241-266 (1977) · Zbl 0361.76029 [5] Benney, D. J., Significant interactions between small and large scale surface waves, Studies in Applied Mathematics, 55, 2, 93-106 (1976) · Zbl 0352.76017 [6] Benney, D. J., A general theory for interactions between short and long waves, Studies in Applied Mathematics, 56, 1, 81-94 (1977) · Zbl 0358.76011 · doi:10.1002/sapm197756181 [7] Angulo, J.; Montenegro, J. F., Existence and evenness of solitary-wave solutions for an equation of short and long dispersive waves, Nonlinearity, 13, 5, 1595-1611 (2000) · Zbl 0983.35005 · doi:10.1088/0951-7715/13/5/310 [8] Lions, P.-L., The concentration-compactness principle in the calculus of variations. The locally compact case. Part 1, Annales De L Institut Henri Poincaré-Analyse Non Linéare, 1, 2, 109-145 (1984) · Zbl 0541.49009 [9] Lions, P.-L., The concentration-compactness principle in the calculus of variations. The locally compact case. II, Annales de l’Institut Henri Poincaré. Analyse Non Linéaire, 1, 4, 223-283 (1984) · Zbl 0704.49004 [10] Angulo, J., Stability of solitary wave solutions for equations of short and long dispersive waves, Electronic Journal of Differential Equations, 72, 1-8 (2006) · Zbl 1110.35071 [11] Bekiranov, D.; Ogawa, T.; Ponce, G., Interaction equations for short and long dispersive waves, Journal of Functional Analysis, 158, 2, 357-388 (1998) · Zbl 0909.35123 · doi:10.1006/jfan.1998.3257 [12] Pecher, H., Rough solutions of a Schrödinger-Benjamin-Ono system, Differential and Integral Equations. An International Journal for Theory & Applications, 19, 5, 517-535 (2006) · Zbl 1212.35456 [13] Angulo, J.; Matheus, C.; Pilod, D., Global well-posedness and non-linear stability of periodic traveling waves for a Schrödinger-Benjamin-Ono system, Communications on Pure and Applied Analysis, 8, 3, 815-844 (2009) · Zbl 1168.35430 · doi:10.3934/cpaa.2009.8.815 [14] Muñoz Grajales, J. C., Error estimates for a Galerkin numerical scheme applied to a generalized BBM equation, Applicable Analysis, 94, 7, 1405-1419 (2015) · Zbl 1320.35278 · doi:10.1080/00036811.2014.932907 [15] Muñoz Grajales, J. C., Analysis of a fourier-galerkin numerical scheme for a 1D benney-luke-paumond equation, Revista Colombiana de Matemáticas, 49, 2, 213-234 (2015) · Zbl 1431.65190 · doi:10.15446/recolma.v49n2.60440 [16] Antonopoulos, D. C.; Dougalis, V. A., rror estimates for Galerkin approximations of the ‘classical’ Boussinesq system, Mathematics and Computers in Simulation, 82, 6, 984-1007 (2012) · Zbl 1320.76058 [17] Antonopoulos, D. C.; Dougalis, V. A.; Mitsotakis, D. E., Numerical solution of Boussinesq systems of the Bona-Smith family, Applied Numerical Mathematics, 60, 4, 314-336 (2010) · Zbl 1303.76082 · doi:10.1016/j.apnum.2009.03.002 [18] Pelloni, B.; Dougalis, V. A., Error estimates for a fully discrete spectral scheme for a class of nonlinear, nonlocal dispersive wave equations, Applied Numerical Mathematics, 37, 1-2, 95-107 (2001) · Zbl 0976.65086 · doi:10.1016/s0168-9274(00)00027-1 [19] Rashid, A.; Akram, S., Convergence of Fourier spectral method for resonant long-short nonlinear wave interaction, Applications of Mathematics, 55, 4, 337-350 (2010) · Zbl 1224.65234 · doi:10.1007/s10492-010-0025-5 [20] Maday, Y.; Quarteroni, A., Error analysis for spectral approximation of the Korteweg-de Vries equation, RAIRO-Modélisation Mathématique et Analyse Numérique, 22, 3, 499-529 (1988) · Zbl 0647.65082 [21] Mercier, B., An Introduction to the Numerical Analysis of Spectral Methods. An Introduction to the Numerical Analysis of Spectral Methods, Lecture Notes in Physics, 318 (1983), New York, NY, USA: Springer, New York, NY, USA This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.