×

\(L_\infty\)-algebra models and higher Chern-Simons theories. (English) Zbl 1353.81098

According to the authors, this paper is intended as a starting point for future work, studying the dynamics of quantized multisymplectic manifolds, along the lines of [H. S. Yang, Mod. Phys. Lett. A 22, No. 16, 1119–1132 (2007; Zbl 1117.83082); H. Steinacker, Classical Quantum Gravity 27, No. 13, Article ID 133001, 46 p. (2010; Zbl 1255.83007)], using \(L_\infty\) models.
The authors state topology and geomtry of spacetime in a physical theory should emerge from a more fundamental descripiton. One of the closest model to solve this problem is the IKKT matrix model [N. Ishibashi et al., “A large \(N\) reduced models superstring”, Nucl.Phys. B 498, No. 1–2, 467–491 (1997; doi:10.1016/S0550-3213(97)00290-3)]. This model is equivalent to the 10-dimensional super Yang-Mills theory dimensionally reduced to a point. In this paper, how to generalize the IKKT model in terms of higher Lie algebras, or equivalently, \(L_\infty\)-algebras, is discussed.
\(L_\infty\)-algebras appear in BV-quantization of classical field theory. Authors discussed models employing 2-term \(L_\infty\)-algebras [the authors, J. High Energy Phys. 2014, No. 4, Paper No. 066, 44 p. (2014; Zbl 1333.81358)]. They are generalized to arbitrary (truncated) \(L_\infty\)-algebras in this paper, and refer to the resulting model as \(L_\infty\)-algebra models. The authors state beyond the dimensional reduction of the bosonic part of the six-dimensional (2,0)-theory (discussed in §6.2), physically interesting action of higher Yang-Mills theory is not known. While higher versions of Chern-Simons theories are constructed using AKSZ formalism [M. Alexandrov et al., Int. J. Mod. Phys. A 12, No. 7, 1405–1429 (1997; Zbl 1073.81655)]. In this construction, both spacetime and higher gauge-algebroid are regarded as N\(Q\)-maniflods; graded manifold having \(\mathbb{N}\) as grade, equipped with a nilpotent vector field \(Q\).
Definitions and properties of N\(Q\) manifolds and \(L_\infty\)-algebras are reviewed in §2 [D. Roytenberg, Contemp. Math. 315, 169–185 (2002; Zbl 1036.53057)], [the authors, “Automorphisms of strong homotopy Lie algebras of local observables”, Preprint, arXiv:1507.00972]. In §3, after explaining higher gauge theory with symplectic N\(Q\)-manifolds, higher Chenr-Simons action is derived by using AKSZ formlism(§3.4). It takes the following form \[ S_{\mathrm{CS}}=\int_\Sigma\bigl(\langle\phi,\mathrm{d}_\Sigma\phi\rangle+\sum_{k=1}^{p+1}\frac{(-1)^{\sigma_k}}{(k+1)!}\langle\mu_k(\phi,\ldots,\phi),\phi\rangle\bigr), \] where \(\mu_k\)’s are higher bracket and \(\sigma_k=k(k+1)/2\). Since the IKKT model is obtained by dimensionally reducing 10-dimensional maximally supersymmetric Yang-Mills theory, §4 deals with dimensional reduction and supersymetric gauge theory using N\(Q\)-manifolds.
The noncommutative spaces arising in the IKKT model are Kähler manifolds, which are restrictive for gravitational physics. In [J. Arnlind and G. Huisken, Lett. Math. Phys. 104, No. 12, 1507–1521 (2014; Zbl 1308.53123)], it is suggested one should turn to Nambu-Poissson manifolds, which overlap with multisymplectic manifolds. On the multisymplectic manifolds, the Poisson algebra is replaced by a higher Lie algebra of observables [J. C. Baez et al., Commun. Math. Phys. 293, No. 3, 701–725 (2010; Zbl 1192.81208)]. These are reviewed in §5 with special attention to the Heisenberg Lie \(p\)-algebra, which is sufficient for the description of quantized symplectic manifolds as solutions of the IKKT model. After these preparations, \(L_\infty\)-models are discussed in §6, the last section. It begins to investigate Yang-Mills type models. Then they show how dimensionally reduced higher Chern-Simons theories provide a unifying picture.

MSC:

81T18 Feynman diagrams
53D50 Geometric quantization
81T60 Supersymmetric field theories in quantum mechanics
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
83E99 Unified, higher-dimensional and super field theories
16E45 Differential graded algebras and applications (associative algebraic aspects)
70S15 Yang-Mills and other gauge theories in mechanics of particles and systems
81T70 Quantization in field theory; cohomological methods
81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] 1. L. Smolin, The case for background independence, hep-th/0507235. · Zbl 1116.83013
[2] 2. N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, A large-N reduced model as superstring, Nucl. Phys. B498 (1997) 467-491; [hep-th/9612115] . genRefLink(16, ’S0129055X16500215BIB002’, ’10.1016
[3] 3. H. Aoki, S. Iso, H. Kawai, Y. Kitazawa, T. Tada and A. Tsuchiya, IIB matrix model, Prog. Theor. Phys. Suppl.134 (1999) 47-83; hep-th/9908038. genRefLink(16, ’S0129055X16500215BIB003’, ’10.1143
[4] 4. H. S. Yang, On the correspondence between noncommutative field theory and gravity, Mod. Phys. Lett A22 (2007) 1119-1132; [hep-th/0612231] . [Abstract] genRefLink(128, ’S0129055X16500215BIB004’, ’000251777400001’); genRefLink(64, ’S0129055X16500215BIB004’, ’2007MPLA...22.1119Y’);
[5] 5. H. Steinacker, Emergent geometry and gravity from matrix models: An introduction, Class. Quant. Grav27 (2010) 133001; [1003.4134 [hep-th]] . genRefLink(16, ’S0129055X16500215BIB005’, ’10.1088
[6] 6. P. Ritter and C. Saemann, Lie 2-algebra models, J. High Energy Phys.1404 (2014) 066; [1308.4892 [hep-th]] . genRefLink(16, ’S0129055X16500215BIB006’, ’10.1007
[7] 7. J. Bagger and N. D. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes, Phys. Rev. D77 (2008) 065008; [0711.0955 [hep-th]] . genRefLink(16, ’S0129055X16500215BIB007’, ’10.1103
[8] 8. A. Gustavsson, Algebraic structures on parallel M2-branes, Nucl. Phys. B811 (2009) 66-76; [0709.1260 [hep-th]] . genRefLink(16, ’S0129055X16500215BIB008’, ’10.1016
[9] 9. A. M. Zeitlin, Homotopy Lie superalgebra in Yang-Mills theory, J. High Energy Phys.09 (2007) 068; [0708.1773 [hep-th]] . genRefLink(16, ’S0129055X16500215BIB009’, ’10.1088
[10] 10. A. M. Zeitlin, BV Yang-Mills as a homotopy Chern-Simons, Int. J. Mod. Phys. A24 (2009) 1309-1331; [0709.1411 [hep-th]] . [Abstract] genRefLink(128, ’S0129055X16500215BIB010’, ’000264555700002’); genRefLink(64, ’S0129055X16500215BIB010’, ’2009IJMPA..24.1309Z’);
[11] 11. C. I. Lazaroiu, D. McNamee, C. Saemann and A. Zejak, Strong homotopy Lie algebras, generalized Nahm equations and multiple M2-branes, 0901.3905 [hep-th].
[12] 12. J. Arnlind and G. Huisken, On the geometry of Kähler-Poisson structures, 1103.5862 [math.DG]. · Zbl 1308.53123
[13] 13. J. Arnlind and G. Huisken, Pseudo-Riemannian geometry in terms of multi-linear brackets, Lett. Math. Phys.104 (2014) 1507-1521; [1312.5454 [math.DG]] . genRefLink(16, ’S0129055X16500215BIB013’, ’10.1007
[14] 14. J. C. Baez, A. E. Hoffnung and C. L. Rogers, Categorified symplectic geometry and the classical string, Comm. Math. Phys.293 (2010) 701-725; [0808.0246 [math-ph]] . genRefLink(16, ’S0129055X16500215BIB014’, ’10.1007
[15] 15. M. Alexandrov, M. Kontsevich, A. Schwartz and O. Zaboronsky, The geometry of the master equation and topological quantum field theory, Int. J. Mod. Phys. A12 (1997) 1405-1429; [hep-th/9502010] . [Abstract] genRefLink(128, ’S0129055X16500215BIB015’, ’A1997WM22500005’); genRefLink(64, ’S0129055X16500215BIB015’, ’1997IJMPA..12.1405A’); · Zbl 1073.81655
[16] 16. M. Bojowald, A. Kotov and T. Strobl, Lie algebroid morphisms, Poisson sigma models, and off-shell closed gauge symmetries, J. Geom. Phys.54 (2005) 400-426; [math.DG/0406445] . genRefLink(16, ’S0129055X16500215BIB016’, ’10.1016 · Zbl 1076.53102
[17] 17. A. Kotov and T. Strobl, Characteristic classes associated to Q-bundles, Int. J. Geom. Methods Mod. Phys.12 (2015) 1550006; [0711.4106 [math.DG]] . [Abstract] genRefLink(128, ’S0129055X16500215BIB017’, ’000346973100006’); · Zbl 1311.58002
[18] 18. M. Gruetzmann and T. Strobl, General Yang-Mills type gauge theories for p-form gauge fields: From physics-based ideas to a mathematical framework OR From Bianchi identities to twisted Courant algebroids, Int. J. Geom. Meth. Mod. Phys.12 (2014) 1550009; [1407.6759 [hep-th]] . [Abstract] genRefLink(128, ’S0129055X16500215BIB018’, ’000346973100009’);
[19] 19. D. Roytenberg, On the structure of graded symplectic supermanifolds and Courant algebroids, in Quantization, Poisson Brackets and Beyond, ed. T. Voronov, Contemp. Math., Vol. 315 (Amer. Math. Soc., 2002); [math.SG/0203110] . genRefLink(16, ’S0129055X16500215BIB019’, ’10.1090 · Zbl 1036.53057
[20] 20. C. Saemann and M. Wolf, Non-abelian tensor multiplet equations from twistor space, Comm. Math. Phys.328 (2014) 527-544; [1205.3108 [hep-th]] . genRefLink(16, ’S0129055X16500215BIB020’, ’10.1007
[21] 21. C. Saemann and M. Wolf, Six-dimensional superconformal field theories from principal 3-bundles over twistor space, Lett. Math. Phys.104 (2014) 1147-1188; [1305.4870 [hep-th]] . genRefLink(16, ’S0129055X16500215BIB021’, ’10.1007 · Zbl 1306.53037
[22] 22. B. Jurco, C. Saemann and M. Wolf, Semistrict higher gauge theory, J. High Energy Phys.1504 (2015) 087; [1403.7185 [hep-th]] . genRefLink(16, ’S0129055X16500215BIB022’, ’10.1007
[23] 23. C. Mayer and T. Strobl, Lie algebroid Yang Mills with matter fields, J. Geom. Phys.59 (2009) 1613-1623; [0908.3161 [hep-th]] . genRefLink(16, ’S0129055X16500215BIB023’, ’10.1016
[24] 24. H. Bursztyn, G. R. Cavalcanti and M. Gualtieri, Reduction of Courant algebroids and generalized complex structures, Adv. Math.211 (2007) 726-765; [math.DG/0509640] . genRefLink(16, ’S0129055X16500215BIB024’, ’10.1016 · Zbl 1115.53056
[25] 25. P. Severa, Some title containing the words ’homotopy’ and ’symplectic’, e.g., this one, Trav. Math.16 (2005) 121-137; [math.SG/0105080] . · Zbl 1102.58010
[26] 26. P. Ritter and C. Saemann, Automorphisms of strong homotopy Lie algebras of local observables, 1507.00972 [hep-th].
[27] 27. A. Y. Vaintrob, Lie algebroids and homological vector fields, Russ. Math. Surv.52 (1997) 428-429. genRefLink(16, ’S0129055X16500215BIB027’, ’10.1070
[28] 28. A. Schwarz, Semiclassical approximation in Batalin-Vilkovisky formalism, Comm. Math. Phys158 (1993) 373-396; [hep-th/9210115] . genRefLink(16, ’S0129055X16500215BIB028’, ’10.1007
[29] 29. A. S. Schwarz, Geometry of Batalin-Vilkovisky quantization, Comm. Math. Phys.155 (1993) 249-260; [hep-th/9205088] . genRefLink(16, ’S0129055X16500215BIB029’, ’10.1007
[30] 30. D. Fiorenza, C. L. Rogers and U. Schreiber, A higher Chern-Weil derivation of AKSZ {\(\sigma\)}-models, Int. J. Geom. Methods Mod. Phys.10 (2013) 1250078; [1108.4378 [math-ph]] . [Abstract] genRefLink(128, ’S0129055X16500215BIB030’, ’000316948800011’); · Zbl 1264.58003
[31] 31. T. Lada and J. Stasheff, Introduction to SH Lie algebras for physicists, Int. J. Theor. Phys.32 (1993) 1087-1103; [hep-th/9209099] . genRefLink(16, ’S0129055X16500215BIB031’, ’10.1007
[32] 32. B. Zwiebach, Closed string field theory: Quantum action and the B-V master equation, Nucl. Phys. B390 (1993) 33-152; [hep-th/9206084] . genRefLink(16, ’S0129055X16500215BIB032’, ’10.1016
[33] 33. M. Kontsevich, Feynman diagrams and low-dimensional topology, in First European Congress of Mathematics (Paris, 1992), Progr. Math., Vol. 120 (Birkhäuser, 1994), pp. 97-121. · Zbl 0872.57001
[34] 34. K. Igusa, Graph cohomology and Kontsevich cycles, Topology43 (2004) 1469-1510; [math.AT/0303157] . genRefLink(16, ’S0129055X16500215BIB034’, ’10.1016
[35] 35. M. Markl, S. Shnider and J. Stasheff, Operads in Algebra, Topology and Physics, Mathematical Surveys and Monographs (American Mathematical Society, 2002). · Zbl 1017.18001
[36] 36. H. Sati, U. Schreiber and J. Stasheff, Lalgebra connections and applications to String- and Chern-Simons n-transport, in Quantum Field Theory, eds. B. Fauser, J. Tolksdorf and E. Zeidler (Birkhäuser, 2009), pp. 303-424; [0801.3480 [math.DG]] . genRefLink(16, ’S0129055X16500215BIB036’, ’10.1007
[37] 37. J. C. Baez, Higher Yang-Mills theory, [hep-th/0206130] .
[38] 38. J. C. Baez and U. Schreiber, Higher gauge theory: 2-connections on 2-bundles, [hep-th/0412325] . · Zbl 1132.55007
[39] 39. J. C. Baez and U. Schreiber, Higher gauge theory, in Categories in Algebra, Geometry and Mathematical Physics, eds. A. Davydov et al., Contemp. Math. Vol. 431 (Amer. Math. Sec., 2007), pp. 7-30; [math.DG/0511710] . genRefLink(16, ’S0129055X16500215BIB039’, ’10.1090 · Zbl 1132.55007
[40] 40. J. C. Baez and J. Huerta, An invitation to higher gauge theory, Gen. Relativ. Gravit.43 (2011) 2335-2392; [1003.4485 [hep-th]] . genRefLink(16, ’S0129055X16500215BIB040’, ’10.1007
[41] 41. D. Roytenberg, AKSZ-BV formalism and Courant algebroid-induced topological field theories, Lett. Math. Phys.79 (2007) 143-159; [hep-th/0608150] . genRefLink(16, ’S0129055X16500215BIB041’, ’10.1007
[42] 42. M. F. Atiyah, Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc.85 (1957) 181-207. genRefLink(16, ’S0129055X16500215BIB042’, ’10.1090 · Zbl 0078.16002
[43] 43. D. Fiorenza, U. Schreiber and J. Stasheff, Čech cocycles for differential characteristic classes – An infinity-Lie theoretic construction, Adv. Theor. Math. Phys.16 (2012) 149-250; [1011.4735 [math.AT]] . genRefLink(16, ’S0129055X16500215BIB043’, ’10.4310
[44] 44. A. Kotov and T. Strobl, Generalizing geometry-Algebroids and sigma models, in Handbook on Pseudo-Riemannian Geometry and Supersymmetry, ed. V. Cortes, IRMA Lectures in Mathematics and Theoretical Physics, Vol. 16 (European Mathematical Society, 2010), pp. 209-262; [1004.0632 [hep-th]] . genRefLink(16, ’S0129055X16500215BIB044’, ’10.4171 · Zbl 1200.53084
[45] 45. N. Seiberg, Notes on theories with 16 supercharges, Nucl. Phys. Proc. Suppl.67 (1998) 158-171; [hep-th/9705117] . genRefLink(16, ’S0129055X16500215BIB045’, ’10.1016
[46] 46. L. Brink, J. H. Schwarz and J. Scherk, Supersymmetric Yang-Mills theories, Nucl. Phys. B121 (1977) 77-92. genRefLink(16, ’S0129055X16500215BIB046’, ’10.1016
[47] 47. J. P. Harnad and S. Shnider, Constraints and field equations for ten-dimensional super Yang-Mills theory, Comm. Math. Phys.106 (1986) 183-199. genRefLink(16, ’S0129055X16500215BIB047’, ’10.1007
[48] 48. C. Devchand and V. Ogievetsky, Conserved currents for unconventional supersymmetric couplings of self-dual gauge fields, Phys. Lett. B367 (1996) 140-144; [hep-th/9510235] . genRefLink(16, ’S0129055X16500215BIB048’, ’10.1016
[49] 49. H. Aoki et al., Noncommutative Yang-Mills in IIB matrix model, Nucl. Phys. B565 (2000) 176-192; [hep-th/9908141] . genRefLink(16, ’S0129055X16500215BIB049’, ’10.1016
[50] 50. J.-H. Park and C. Sochichiu, Taking off the square root of Nambu-Goto action and obtaining Filippov-Lie algebra gauge theory action, Eur. Phys. J. C64 (2009) 161-166; [0806.0335 [hep-th]] . genRefLink(16, ’S0129055X16500215BIB050’, ’10.1140
[51] 51. Y. Nambu, Generalized Hamiltonian dynamics, Phys. Rev. D7 (1973) 2405-2412. genRefLink(16, ’S0129055X16500215BIB051’, ’10.1103
[52] 52. L. Takhtajan, On foundation of the generalized Nambu mechanics (second version), Comm. Math. Phys.160 (1994) 295-315; [hep-th/9301111] . genRefLink(16, ’S0129055X16500215BIB052’, ’10.1007
[53] 53. P. Gautheron, Some remarks concerning Nambu mechanics, Lett. Math. Phys.37 (1996) 103-116. genRefLink(16, ’S0129055X16500215BIB053’, ’10.1007
[54] 54. V. T. Filippov, n-Lie algebras, Sib. Mat. Zh.26 (1985) 126-140. genRefLink(128, ’S0129055X16500215BIB054’, ’A1985E048700015’); · Zbl 0585.17002
[55] 55. S. Palmer and C. Saemann, M-brane models from non-abelian gerbes, J. High Energy Phys.1207 (2012) 010; [1203.5757 [hep-th]] . genRefLink(16, ’S0129055X16500215BIB055’, ’10.1007
[56] 56. N. Nakanishi, A survey of Nambu-Poisson geometry, Lobachevskii J. Math.4 (1999) 5-11. · Zbl 0937.37053
[57] 57. J. DeBellis, C. Saemann and R. J. Szabo, Quantized Nambu-Poisson manifolds and n-Lie algebras, J. Math. Phys.51 (2010) 122303; [1001.3275 [hep-th]] . genRefLink(16, ’S0129055X16500215BIB057’, ’10.1063
[58] 58. L. A. Takhtajan, Higher order analog of Chevalley-Eilenberg complex and deformation theory of n-gebras, Algebra i Analiz6 (1994) 429-438. · Zbl 0833.17021
[59] 59. N. Nakanishi, On Nambu-Poisson manifolds, Rev. Math. Phys.10 (1998) 499-510. [Abstract] genRefLink(128, ’S0129055X16500215BIB059’, ’000074891200004’); genRefLink(64, ’S0129055X16500215BIB059’, ’1998RvMaP..10..499N’); · Zbl 0929.70015
[60] 60. I. Vaisman, A survey on Nambu-Poisson brackets, Acta Math. Univ. Comenianae68 (1999) 213-241; [math.DG/9901047] . · Zbl 0953.53023
[61] 61. G. Barnich, R. Fulp, T. Lada and J. Stasheff, The SH Lie structure of Poisson brackets in field theory, Comm. Math. Phys.191 (1998) 585-601; [hep-th/9702176] . genRefLink(16, ’S0129055X16500215BIB061’, ’10.1007
[62] 62. F. Cantrijn, L. A. Ibort and M. de Leon, Hamiltonian structures on multisymplectic manifolds, Rend. Sem. Mat. Univ. Pol. Torino54 (1996) 225-236. · Zbl 0911.58016
[63] 63. C. L. Rogers, Lalgebras from multisymplectic geometry, Lett. Math. Phys.100 (2011) 29-50; [1005.2230 [math.DG]] . genRefLink(16, ’S0129055X16500215BIB063’, ’10.1007
[64] 64. F. Cantrijn, A. Ibort and M. de Leon, On the geometry of multisymplectic manifolds, J. Austr. Math. Soc.66 (1999) 303-330. genRefLink(16, ’S0129055X16500215BIB064’, ’10.1017
[65] 65. J. C. Baez and C. L. Rogers, Categorified symplectic geometry and the string Lie 2-algebra, Homol. Homot. Appl.12 (2010) 221-236; [0901.4721 [math-ph]] . genRefLink(16, ’S0129055X16500215BIB065’, ’10.4310 · Zbl 1277.70031
[66] 66. D. Roytenberg and A. Weinstein, Courant algebroids and strongly homotopy Lie algebras, Lett. Math. Phys.46 (1998) 81-93; [math.QA/9802118] . genRefLink(16, ’S0129055X16500215BIB066’, ’10.1023
[67] 67. C. L. Rogers, 2-plectic geometry, Courant algebroids, and categorified prequantization, J. Symp. Geom.11 (2013) 53-91; [1009.2975 [math-ph]] . genRefLink(16, ’S0129055X16500215BIB067’, ’10.4310
[68] 68. D. Fiorenza and M. Manetti, Lstructures on mapping cones, Alg. Number Theory1 (2007) 301-330; [math.QA/0601312] . genRefLink(16, ’S0129055X16500215BIB068’, ’10.2140
[69] 69. E. Getzler, Higher derived brackets, 1010.5859 [math-ph].
[70] 70. C. L. Rogers, Higher symplectic geometry, PhD thesis, UC Riverside (2011); 1106.4068 [math-ph].
[71] 71. D. Fiorenza, C. L. Rogers and U. Schreiber, Lalgebras of local observables from higher prequantum bundles, Homol. Homot. Appl.16 (2014) 107-142; [1304.6292 [math-ph]] . genRefLink(16, ’S0129055X16500215BIB071’, ’10.4310
[72] 72. D. Fiorenza, C. L. Rogers and U. Schreiber, Higher U(1)-gerbe connections in geometric prequantization, 1304.0236 [math-ph]. · Zbl 1366.53068
[73] 73. S. Iso, Y. Kimura, K. Tanaka and K. Wakatsuki, Noncommutative gauge theory on fuzzy sphere from matrix model, Nucl. Phys. B604 (2001) 121-147; [hep-th/0101102] . genRefLink(16, ’S0129055X16500215BIB073’, ’10.1016
[74] 74. Y. Kimura, Noncommutative gauge theories on fuzzy sphere and fuzzy torus from matrix model, Prog. Theor. Phys.106 (2001) 445-469; [hep-th/0103192] . genRefLink(16, ’S0129055X16500215BIB074’, ’10.1143
[75] 75. S. Palmer and C. Saemann, The ABJM model is a higher gauge theory, Int. J. Geom. Methods Mod. Phys.11 (2014) 1450075; [1311.1997 [hep-th]] . [Abstract] genRefLink(128, ’S0129055X16500215BIB075’, ’000341784600011’);
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.