×

Packing stability for symplectic 4-manifolds. (English) Zbl 1354.53081

Let \(P \subset \mathbb R^2\) be a subset of the first quadrant, and denote by \(U(P) \subset \mathbb C^2\) the interior of \(\{(z,w) : (\pi |z|^2, \pi |w|^2) \in P\}\). When \(P\) is the convex hull of \(\{(0,0), (a, 0), (0, b) \}\), for some positive real numbers \(a,b\), then \(U(P)\) is a symplectic ellipsoid. In particular, for \(a = b = \lambda\), \(U(P)\) is a symplectic ball of capacity \(\lambda\) and it is denoted by \(B(\lambda)\). The authors also define pseudoballs as those \(U(P)\), where \(P\) is the convex hull of \(\{(0,0), (0,a), (b,0), (\alpha, \beta) \}\) for some \(a >\alpha\), \(b > \beta\), and \(a,b< \alpha + \beta\). A symplectic \(4\)-manifold \(X\) has strong packing stability if there exists a positive real number \(\lambda\) such that, for all collections of real numbers \((\lambda_i)\), with \(\lambda_i< \lambda\), a symplectic embedding \(\sqcup_i B(\lambda_i) \hookrightarrow X\) exists iff \(\tfrac{1}{2} \sum_i \lambda^2_i \leq \mathrm{Vol} (X)\). The authors first prove that certain open symplectic \(4\)-manifolds have strong packing stability: namely, all symplectic ellipsoids and pseudo-balls. Then they use these results to prove their main Theorem: All closed symplectic \(4\)-manifolds have strong packing stability. This generalizes older results by P. Biran [Geom. Funct. Anal. 7, No. 3, 420–437 (1997; Zbl 0892.53022)].

MSC:

53D05 Symplectic manifolds (general theory)
57R17 Symplectic and contact topology in high or arbitrary dimension

Citations:

Zbl 0892.53022
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Buse, Olguta; Hind, Richard, Symplectic embeddings of ellipsoids in dimension greater than four, Geom. Topol., 15, 4, 2091-2110 (2011) · Zbl 1239.53107 · doi:10.2140/gt.2011.15.2091
[2] Buse, O.; Hind, R., Ellipsoid embeddings and symplectic packing stability, Compos. Math., 149, 5, 889-902 (2013) · Zbl 1268.53092 · doi:10.1112/S0010437X12000826
[3] Biran, P., Symplectic packing in dimension \(4\), Geom. Funct. Anal., 7, 3, 420-437 (1997) · Zbl 0892.53022 · doi:10.1007/s000390050014
[4] Biran, Paul, A stability property of symplectic packing, Invent. Math., 136, 1, 123-155 (1999) · Zbl 0930.53052 · doi:10.1007/s002220050306
[5] Entov, Michael; Verbitsky, Misha, Unobstructed symplectic packing for tori and hyper-K\"ahler manifolds, Journal of Topology and Analysis, 1650022 pp. (2016) · Zbl 1353.53055 · doi:10.1142/S1793525316500229
[6] Latschev, Janko; McDuff, Dusa; Schlenk, Felix, The Gromov width of 4-dimensional tori, Geom. Topol., 17, 5, 2813-2853 (2013) · Zbl 1277.57024
[7] McDuff, Dusa, From symplectic deformation to isotopy. Topics in symplectic \(4\)-manifolds, Irvine, CA, 1996, First Int. Press Lect. Ser., I, 85-99 (1998), Int. Press, Cambridge, MA · Zbl 0928.57018
[8] McDuff, Dusa, Symplectic embeddings of 4-dimensional ellipsoids, J. Topol., 2, 1, 1-22 (2009) · Zbl 1166.53051 · doi:10.1112/jtopol/jtn031
[9] McDuff, Dusa, The Hofer conjecture on embedding symplectic ellipsoids, J. Differential Geom., 88, 3, 519-532 (2011) · Zbl 1239.53109
[10] McDuff, Dusa; Opshtein, Emmanuel, Nongeneric \(J\)-holomorphic curves and singular inflation, Algebr. Geom. Topol., 15, 1, 231-286 (2015) · Zbl 1328.53106 · doi:10.2140/agt.2015.15.231
[11] McDuff, Dusa; Salamon, Dietmar, Introduction to symplectic topology, Oxford Mathematical Monographs, x+486 pp. (1998), The Clarendon Press, Oxford University Press, New York · Zbl 1066.53137
[12] Opshtein, Emmanuel, Maximal symplectic packings in \(\mathbb{P}^2\), Compos. Math., 143, 6, 1558-1575 (2007) · Zbl 1133.53057 · doi:10.1112/S0010437X07003041
[13] Opshtein, Emmanuel, Polarizations and symplectic isotopies, J. Symplectic Geom., 11, 1, 109-133 (2013) · Zbl 1405.53119 · doi:10.4310/JSG.2013.v11.n1.a6
[14] Opshtein, Emmanuel, Singular polarizations and ellipsoid packings, Int. Math. Res. Not. IMRN, 11, 2568-2600 (2013) · Zbl 1328.53100 · doi:10.1093/imrn/rns137
[15] Opshtein, Emmanuel, Symplectic packings in dimension 4 and singular curves, J. Symplectic Geom., 13, 2, 305-342 (2015) · Zbl 1317.53114 · doi:10.4310/JSG.2015.v13.n2.a3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.