×

zbMATH — the first resource for mathematics

Adjoint twisted Alexander polynomials of genus one two-bridge knots. (English) Zbl 1354.57023
The twisted Alexander polynomial is a generalization of the Alexander polynomial. It is a polynomial invariant of a \(3\)-manifold which is associated with a choice of a representation of its fundamental group.
Let \(K\subset S^3\) be a knot and \(\Pi\) the fundamental group of its exterior. Given a representation \(\rho\) of \(\Pi\) into \(SL_2(\mathbb{C})\), one can compose it with the adjoint action \(Ad\), which consists in the conjugation on the Lie algebra \(sl_2(\mathbb{C})\) by the Lie group \(SL_2(\mathbb{C})\), to obtain a representation of \(\Pi\) into \(SL_3(\mathbb{C})\).
The twisted Alexander polynomial associated to \(Ad\circ\rho\) is called the adjoint twisted Alexander polynomial associated to \(\rho\). This polynomial has been previously explicitly calculated by the author for torus knots and twist knots. In this paper, the author generalizes his computations to the family of genus one two-bridge knots, a class of two-bridge knots which includes twist knots. As a consequence, he deduces the nonabelian Reidemeister torsion of genus one two-bridge knots.

MSC:
57M27 Invariants of knots and \(3\)-manifolds (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] 1. J. Alexander, Topological invariants of knots and links, Trans. Amer. Math. Soc.30(2) (1928) 275-306. genRefLink(16, ’S0218216516500656BIB001’, ’10.1090%252FS0002-9947-1928-1501429-1’); · JFM 54.0603.03
[2] 2. G. Burde and H. Zieschang, Knots, de Gruyter Studies in Mathematics, Vol. 5 (Walter de Gruyter & Co., Berlin, 2003).
[3] 3. J. Dubois, Nonabelian twisted Reidemeister torsion for fibered knots, Canad. Math. Bull.49(1) (2006) 55-71. genRefLink(16, ’S0218216516500656BIB003’, ’10.4153%252FCMB-2006-006-0’); genRefLink(128, ’S0218216516500656BIB003’, ’000235318700006’);
[4] 4. J. Dubois, V. Huynh and Y. Yamaguchi, Nonabelian Reidemeister torsion for twist knots, J. Knot Theory Ramifications18(3) (2009) 303-341. [Abstract] genRefLink(128, ’S0218216516500656BIB004’, ’000265094000001’); · Zbl 1207.57011
[5] 5. J. Dubois and Y. Yamaguchi, Twisted Alexander invariant and nonabelian Reidemeister torsion for hyperbolic three dimensional manifolds with cusps, arXiv:0906.1500.
[6] 6. S. Friedl and S. Vidussi, A survey of twisted Alexander polynomials, in The Mathematics of Knots, Theory and Application, Contributions in Mathematical and Computational Sciences, eds. M. Banagl and D. Vogel (Springer-Verlag, Berlin, 2010), pp. 45-94. · Zbl 1223.57012
[7] 7. J. Hoste and P. Shanahan, A formula for the A-polynomial of twist knots, J. Knot Theory Ramifications14(1) (2005) 91-100. [Abstract] genRefLink(128, ’S0218216516500656BIB007’, ’000227883500005’); · Zbl 1074.57007
[8] 8. R. Kashaev, The hyperbolic volume of knots from the quantum dilogarithm, Lett. Math. Phys.39(3) (1997) 269-275. genRefLink(16, ’S0218216516500656BIB008’, ’10.1023%252FA%253A1007364912784’); genRefLink(128, ’S0218216516500656BIB008’, ’A1997WL14600006’);
[9] 9. P. Kirk and C. Livingston, Twisted Alexander invariants, Reidemeister torsion, and Casson-Gordon invariants, Topology38(3) (1999) 635-661. genRefLink(16, ’S0218216516500656BIB009’, ’10.1016%252FS0040-9383%252898%252900039-1’); genRefLink(128, ’S0218216516500656BIB009’, ’000078622200010’);
[10] 10. T. Kitano, Twisted Alexander polynomial and Reidemeister torsion, Pacific J. Math.174(2) (1996) 431-442. genRefLink(16, ’S0218216516500656BIB010’, ’10.2140%252Fpjm.1996.174.431’); genRefLink(128, ’S0218216516500656BIB010’, ’A1996VG16800006’);
[11] 11. T. Le, Varieties of representations and their subvarieties of cohomology jumps for certain knot groups, Russian Acad. Sci. Sb. Math.78 (1994) 187-209.
[12] 12. X. S. Lin, Representations of knot groups and twisted Alexander polynomials, Acta Math. Sin. (Engl. Ser.)17 (2001) 361-380. genRefLink(16, ’S0218216516500656BIB012’, ’10.1007%252Fs101140100122’); genRefLink(128, ’S0218216516500656BIB012’, ’000170096300001’);
[13] 13. T. Morifuji, Representations of knot groups into SL(2,\(\mathbb{C}\)) and twisted Alexander polynomials, in Handbook of Group Actions, Vol. 1, Advanced Lectures in Mathematics, Vol. 31, (Springer, Berlin, 2015), pp. 527-576.
[14] 14. H. Murakami and J. Murakami, The colored Jones polynomials and the simplicial volume of a knot, Acta Math.186(1) (2001) 85-104. genRefLink(16, ’S0218216516500656BIB014’, ’10.1007%252FBF02392716’); genRefLink(128, ’S0218216516500656BIB014’, ’000168594900002’);
[15] 15. T. Ohtsuki and T. Takata, On the Kashaev invariant and the twisted Reidemeister torsion of two-bridge knots, Geom. Topol.19(2) (2015) 853-952. genRefLink(16, ’S0218216516500656BIB015’, ’10.2140%252Fgt.2015.19.853’); genRefLink(128, ’S0218216516500656BIB015’, ’000354868100003’);
[16] 16. J. Porti, Reidemeister torsion, hyperbolic three-manifolds, and character varieties, preprint 2015, arXiv:1511.00400.
[17] 17. J. Porti, Torsion de Reidemeister pour les varietes hyperboliques, Mem. Amer. Math. Soc.128(612) (1997).
[18] 18. R. Riley, Nonabelian representations of two-bridge knot groups, Q. J. Math. Oxford Ser. (2)35(138) (1984) 191-208. genRefLink(16, ’S0218216516500656BIB018’, ’10.1093%252Fqmath%252F35.2.191’); genRefLink(128, ’S0218216516500656BIB018’, ’A1984SU27100010’);
[19] 19. A. Tran, Twisted Alexander polynomials of genus one two-bridge knots, preprint 2015, arXiv:1506.05035. · Zbl 1396.57035
[20] 20. A. Tran, Twisted Alexander polynomials with the adjoint action for some classes of knots, J. Knot Theory Ramifications23 (2014) 10, 1450051. [Abstract] genRefLink(128, ’S0218216516500656BIB020’, ’000345214900002’); · Zbl 1305.57031
[21] 21. M. Wada, Twisted Alexander polynomial for finitely presentable groups, Topology33 (1994) 241-256. genRefLink(16, ’S0218216516500656BIB021’, ’10.1016%252F0040-9383%252894%252990013-2’); genRefLink(128, ’S0218216516500656BIB021’, ’A1994NM47600003’);
[22] 22. Y. Yamaguchi, A relationship between the nonacyclic Reidemeister torsion and a zero of the acyclic Reidemeister torsion, Ann. Inst. Fourier (Grenoble)58(1) (2008) 337-362. genRefLink(16, ’S0218216516500656BIB022’, ’10.5802%252Faif.2352’); genRefLink(128, ’S0218216516500656BIB022’, ’000255920100011’);
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.