zbMATH — the first resource for mathematics

Deformed Calogero-Sutherland model and fractional quantum Hall effect. (English) Zbl 1355.81188
Summary: The deformed Calogero-Sutherland (CS) model is a quantum integrable system with arbitrary numbers of two types of particles and reducing to the standard CS model in special cases. We show that a known collective field description of the CS model, which is based on conformal field theory (CFT), is actually a collective field description of the deformed CS model. This provides a natural application of the deformed CS model in Wen’s effective field theory of the fractional quantum Hall effect (FQHE), with the two kinds of particles corresponding to electrons and quasi-hole excitations. In particular, we use known mathematical results about super-Jack polynomials to obtain simple explicit formulas for the orthonormal CFT basis proposed by van Elburg and Schoutens in the context of the FQHE.
©2017 American Institute of Physics

81V70 Many-body theory; quantum Hall effect
81R12 Groups and algebras in quantum theory and relations with integrable systems
81T45 Topological field theories in quantum mechanics
14D15 Formal methods and deformations in algebraic geometry
Full Text: DOI arXiv
[1] Calogero, F., Solution of the one-dimensional N-body problems with quadratic and/or inversely quadratic pair potentials, J. Math. Phys., 12, 419-436, (1971)
[2] Sutherland, B., Exact results for a quantum many-body problem in one dimension. II, Phys. Rev. A, 4, 2019-2021, (1971)
[3] Chalykh, O.; Feigin, M.; Veselov, A., New integrable generalizations of Calogero-Moser quantum problem, J. Math. Phys., 39, 695-703, (1998) · Zbl 0906.34061
[4] Sergeev, A. N., Calogero operator and Lie superalgebras, Theor. Math. Phys., 131, 747-764, (2002) · Zbl 1039.81028
[5] Khodarinova, L. A., Quantum integrability of the deformed elliptic Calogero-Moser problem, J. Math. Phys., 46, 033506, (2005) · Zbl 1067.81059
[6] Sergeev, A.; Veselov, A., Deformed quantum Calogero-Moser problems and Lie superalgebras, Commun. Math. Phys., 245, 249-278, (2004) · Zbl 1062.81097
[7] Olshanetsky, M.; Perelomov, A., Quantum integrable systems related to Lie algebras, Phys. Rep., 94, 313-404, (1983)
[8] Kerov, S.; Okounkov, A.; Olshanski, G., The boundary of the Young graph with Jack edge multiplicities, Int. Math. Res. Not., 1998, 173-199 · Zbl 0960.05107
[9] Sergeev, A.; Veselov, A., Generalised discriminants, deformed Calogero-Moser-Sutherland operators and super-Jack polynomials, Adv. Math., 192, 341-375, (2005) · Zbl 1069.05076
[10] Stanley, R. P., Some combinatorial properties of Jack symmetric functions, Adv. Math., 77, 76-115, (1989) · Zbl 0743.05072
[11] Macdonald, I. G., Symmetric Functions and Hall Polynomials, (1998), Oxford University Press · Zbl 0899.05068
[12] Hallnäs, M.; Langmann, E., A unified construction of generalized classical polynomials associated with operators of Calogero-Sutherland type, Constr. Approximation, 31, 309-342, (2010) · Zbl 1193.33028
[13] Minahan, J. A.; Polychronakos, A. P., Density-correlation functions in Calogero-Sutherland models, Phys. Rev. B, 50, 4236-4239, (1994)
[14] Iso, S., Anyon basis of c = 1 conformal field theory, Nucl. Phys. B, 443, 581-595, (1995) · Zbl 0990.81708
[15] Awata, H.; Matsuo, Y.; Odake, S.; Shiraishi, J., Collective field theory, Calogero-Sutherland model and generalized matrix models, Phys. Lett. B, 347, 49-55, (1995) · Zbl 0894.17027
[16] Carey, A. L.; Langmann, E., Loop groups, anyons and the Calogero-Sutherland model, Commun. Math. Phys., 201, 1-34, (1999) · Zbl 1044.81708
[17] Tsui, D. C.; Stormer, H. L.; Gossard, A. C., Two-dimensional magnetotransport in the extreme quantum limit, Phys. Rev. Lett., 48, 1559-1562, (1982)
[18] Kac, V. G., Vertex Algebras for Beginners, 10, (1998), American Mathematical Society · Zbl 0924.17023
[19] Jevicki, A.; Sakita, B., The quantum collective field method and its application to the planar limit, Nucl. Phys. B, 165, 511-527, (1980)
[20] Awata, H.; Matsuo, Y.; Odake, S.; Shiraishi, J., Excited states of the Calogero-Sutherland model and singular vectors of the W_N algebra, Nucl. Phys. B, 449, 347-374, (1995) · Zbl 0894.17024
[21] Langmann, E., Algorithms to solve the (quantum) Sutherland model, J. Math. Phys., 42, 4148-4157, (2001) · Zbl 1012.81022
[22] Sakamoto, R.; Shiraishi, J.; Arnaudon, D.; Frappat, L.; Ragoucy, E., Correspondence between conformal field theory and Calogero-Sutherland model, Nucl. Phys. B, 704, 490-509, (2005) · Zbl 1119.81388
[23] Sergeev, A.; Veselov, A., Calogero-Moser operators in infinite dimension, (2009)
[24] Estienne, B.; Pasquier, V.; Santachiara, R.; Serban, D., Conformal blocks in Virasoro and W theories: Duality and the Calogero-Sutherland model, Nucl. Phys. B, 860, 377-420, (2012) · Zbl 1246.81323
[25] Nakajima, H., More lectures on Hilbert schemes of points on surfaces, (2014)
[26] Wen, X. G., Chiral Luttinger liquid and the edge excitations in the fractional quantum Hall states, Phys. Rev. B, 41, 12838-12844, (1990)
[27] van Elburg, R. A. J.; Schoutens, K., Quasiparticles in fractional quantum Hall effect edge theories, Phys. Rev. B, 58, 15704-15716, (1998)
[28] We use this names since, in general, the vertex operators ϕ_ν(x) and ϕ_−1/ν(x) obey the exchange relations of anyons; see Ref. 27.
[29] Nazarov, M. L.; Sklyanin, E. K., Sekiguchi-Debiard operators at infinity, Commun. Math. Phys., 324, 831-849, (2013) · Zbl 1408.81016
[30] Cappelli, A.; Trugenberger, C. A.; Zemba, G. R., Infinite symmetry in the quantum Hall effect, Nucl. Phys. B, 396, 465-490, (1993)
[31] Azuma, H.; Iso, S., Explicit relation of the quantum Hall effect and the Calogero-Sutherland model, Phys. Lett. B, 331, 107-113, (1994)
[32] Bernevig, B. A.; Haldane, F. D. M., Model fractional quantum Hall states and Jack polynomials, Phys. Rev. Lett., 100, 246802, (2008)
[33] Lesage, F.; Pasquier, V.; Serban, D., Dynamical correlation functions in the Calogero-Sutherland model, Nucl. Phys. B, 435, 585-603, (1995) · Zbl 1020.82539
[34] We thank Didina Serban for discussions on this.
[35] Andrić, I.; Jonke, L., Duality and quasiparticles in the Calogero-Sutherland model: Some exact results, Phys. Rev. A, 65, 034707, (2002)
[36] Atai, F., Anyons in (1 + 1) dimensions and the deformed Calogero-Sutherland model, (2011), KTH Royal Institute of Technology
[37] Note that, for K = 0, n_j = 0 ∀j > N.
[38] To be precise, eigenvalues for the reduced differential operators, obtained by similarity transformation of the dCS Hamiltonian(5)with the dCS groundstate(7) and subtracting the dCS groundstate eigenvalue, and for q_0 = 0.
[39] Carey, A. L.; Ruijsenaars, S. N. M., On fermion gauge groups, current algebras and Kac-Moody algebras, Acta Appl. Math., 10, 1-86, (1987) · Zbl 0644.22012
[40] Wilczek, F., Quantum mechanics of fractional-spin particles, Phys. Rev. Lett., 49, 957-959, (1982)
[41] Langmann, E.; Moosavi, P., Construction by bosonization of a fermion-phonon model, J. Math. Phys., 56, 091902, (2015) · Zbl 1333.81222
[42] Langmann, E., Second quantization of the elliptic Calogero-Sutherland model, Commun. Math. Phys., 247, 321-351, (2004) · Zbl 1062.81131
[43] Langmann, E., Remarkable identities related to the (quantum) elliptic Calogero-Sutherland model, J. Math. Phys., 47, 022101, (2006) · Zbl 1111.81161
[44] It follows from Cauchy’s theorem that there is a large freedom to deform these integration contours.
[45] Felder, G., BRST approach to minimal models, Nucl. Phys. B, 317, 215-236, (1989)
[46] Langmann, E., Conformal field theory and the solution of the (quantum) elliptic Calogero-Sutherland system, Noncommutative Geometry and Representation Theory in Mathematical Physics, 391, 223, (2005), American Mathematical Society · Zbl 1104.17018
[47] Atai, F., Hallnäs, M., and Langmann, E., (unpublished).
[48] Langmann, E., Source identity and kernel functions for elliptic Calogero-Sutherland type systems, Lett. Math. Phys., 94, 63-75, (2010) · Zbl 1198.81093
[49] Bouwknegt, P.; Ludwig, A. W.; Schoutens, K., Spinon bases, Yangian symmetry and fermionic representations of Virasoro characters in conformal field theory, Phys. Lett. B, 338, 448-456, (1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.