Ahmadi, Jafar; Di Crescenzo, Antonio; Longobardi, Maria On dynamic mutual information for bivariate lifetimes. (English) Zbl 1355.94022 Adv. Appl. Probab. 47, No. 4, 1157-1174 (2015). Summary: We consider dynamic versions of the mutual information of lifetime distributions, with a focus on past lifetimes, residual lifetimes, and mixed lifetimes evaluated at different instants. This allows us to study multicomponent systems, by measuring the dependence in conditional lifetimes of two components having possibly different ages. We provide some bounds, and investigate the mutual information of residual lifetimes within the time-transformed exponential model (under both the assumptions of unbounded and truncated lifetimes). Moreover, with reference to the order statistics of a random sample, we evaluate explicitly the mutual information between the minimum and the maximum, conditional on inspection at different times, and show that it is distribution-free in a special case. Finally, we develop a copula-based approach aiming to express the dynamic mutual information for past and residual bivariate lifetimes in an alternative way. Cited in 13 Documents MSC: 94A17 Measures of information, entropy 62N05 Reliability and life testing 60E99 Distribution theory Keywords:entropy; mutual information; time-transformed exponential model; bivariate lifetimes; order statistics; copula × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid References: [1] Abbasnejad, M., Arghami, N. R., Morgenthaler, S. and Mohtashami Borzadaran, G. R. (2010). On the dynamic survival entropy. Statist. Prob. Lett. 80 , 1962-1971. · Zbl 1202.62002 · doi:10.1016/j.spl.2010.08.026 [2] Arellano-Valle, R. B., Contreras-Reyes, J. E. and Genton, M. G. (2013). Shannon entropy and mutual information for multivariate skew-elliptical distributions. Scand. J. Statist. 40 , 42-62. · Zbl 1259.62002 · doi:10.1111/j.1467-9469.2011.00774.x [3] Asadi, M. and Zohrevand, Y. (2007). On the dynamic cumulative residual entropy. J. Statist. Planning Infer. 137 , 1931-1941. · Zbl 1118.62006 · doi:10.1016/j.jspi.2006.06.035 [4] Bassan, B. and Spizzichino, F. (2005). Relations among univariate aging, bivariate aging and dependence for exchangeable lifetimes. J. Multivariate Anal. 93 , 313-339. · Zbl 1070.60015 · doi:10.1016/j.jmva.2004.04.002 [5] Belzunce, F., Navarro, J., Ruiz, J. M. and del Aguila, Y. (2004). Some results on residual entropy function. Metrika 59 , 147-161. · Zbl 1079.62008 · doi:10.1007/s001840300276 [6] David, H. A. and Nagaraja, H. N. (2003). Order Statistics , 3rd edn. John Wiley, Hoboken, NJ. · Zbl 1053.62060 · doi:10.1002/0471722162 [7] Davy, M. and Doucet A. (2003). Copulas: a new insight into positive time-frequency distributions. IEEE Signal Process. Lett. 10 , 215-218. [8] Di Crescenzo, A. and Longobardi, M. (2002). Entropy-based measure of uncertainty in past lifetime distributions. J. Appl. Prob. 39 , 434-440. · Zbl 1003.62087 · doi:10.1239/jap/1025131441 [9] Di Crescenzo, A. and Longobardi, M. (2009). On cumulative entropies. J. Statist. Planning. Infer. 139 , 4072-4087. · Zbl 1172.94543 · doi:10.1016/j.jspi.2009.05.038 [10] Di Crescenzo, A., Longobardi, M. and Nastro, A. (2004). On the mutual information between residual lifetime distributions. In: Cybernetics and Systems 2004 , Vol. 1, Austrian Society for Cybernetic Studies, Vienna, pp. 142-145. [11] Durante, F. and Sempi, C. (2015). Principles of Copula Theory . Chapman and Hall/CRC, Boca Raton, FL. · Zbl 1380.62008 [12] Ebrahimi, N. (1996). How to measure uncertainty in the residual life time distribution. Sankhyā A 58 , 48-56. · Zbl 0893.62098 [13] Ebrahimi, N. and Pellerey, F. (1995). New partial ordering of survival functions based on the notion of uncertainty. J. Appl. Prob. 32 , 202-211. · Zbl 0817.62082 · doi:10.2307/3214930 [14] Ebrahimi, N., Kirmani, S. N. U. A. and Soofi, E. S. (2007). Multivariate dynamic information. J. Multivariate Anal. 98 , 328-349. · Zbl 1143.94005 · doi:10.1016/j.jmva.2005.08.004 [15] Ebrahimi, N., Soofi, E. S. and Soyer, R. (2008). Multivariate maximum entropy identification, transformation, and dependence. J. Multivariate Anal. 99 , 1217-1231. · Zbl 1140.60307 · doi:10.1016/j.jmva.2007.08.004 [16] Ebrahimi, N., Soofi, E. S. and Soyer, R. (2010). Information measures in perspective. Internat. Statist. Rev. 78 , 383-412. [17] Ebrahimi, N., Soofi, E. S. and Zahedi, H. (2004). Information properties of order statistics and spacings. IEEE Trans. Inf. Theory 50 , 177-183. · Zbl 1296.94055 · doi:10.1109/TIT.2003.821973 [18] Ebrahimi, N., Hamedani, G. G., Soofi, E. S. and Volkmer, H. (2010). A class of models for uncorrelated random variables. J. Multivariate Anal. 101 , 1859-1871. · Zbl 1190.62105 · doi:10.1016/j.jmva.2010.03.011 [19] Giraudo, M. T., Sacerdote, L. and Sirovich, R. (2013). Non-parametric estimation of mutual information through the entropy of the linkage. Entropy 15 , 5154-5177. · Zbl 1338.62083 · doi:10.3390/e15125154 [20] Gupta, R. C. (2008). Reliability studies of bivariate distributions with exponential conditionals. Math. Comput. Modelling 47 , 1009-1018. · Zbl 1144.62344 · doi:10.1016/j.mcm.2007.06.016 [21] Kundu, C., Nanda, A. K. and Maiti, S. S. (2010). Some distributional results through past entropy. J. Statist. Planning Infer. 140 , 1280-1291. · Zbl 1186.60012 · doi:10.1016/j.jspi.2009.11.011 [22] Li, X. and Lin, J. (2011). Stochastic orders in time transformed exponential models with applications. Insurance Math. Econom. 49 , 47-52. · Zbl 1220.91019 · doi:10.1016/j.insmatheco.2011.02.002 [23] Misagh, F. and Yari, G. H. (2011). On weighted interval entropy. Statist. Prob. Lett. 81 , 188-194. · Zbl 1205.62154 · doi:10.1016/j.spl.2010.11.006 [24] Mulero, J., Pellerey, F. and Rodríguez-Griñolo, R. (2010). Stochastic comparisons for time transformed exponential models. Insurance Math. Econom. 46 , 328-333. · Zbl 1231.91220 · doi:10.1016/j.insmatheco.2009.11.006 [25] Nanda, A. K. and Paul, P. (2006). Some properties of past entropy and their applications. Metrika 64 , 47-61. · Zbl 1104.94007 · doi:10.1007/s00184-006-0030-6 [26] Nanda, A. K. and Paul, P. (2006). Some results on generalized past entropy. J. Statist. Planning Infer. 136 , 3659-3674. · Zbl 1098.94014 · doi:10.1016/j.jspi.2005.01.006 [27] Navarro, J., del Aguila, Y. and Asadi, M. (2010). Some new results on the cumulative residual entropy. J. Statist. Planning Infer. 140 , 310-322. · Zbl 1177.62005 · doi:10.1016/j.jspi.2009.07.015 [28] Pellerey, F. (2008). On univariate and bivariate aging for dependent lifetimes with Archimedean survival copulas. Kybernetika 44 , 795-806. · Zbl 1181.62166 [29] Roy, D. (2002). On bivariate lack of memory property and a new definition. Ann. Inst. Statist. Math. 54 , 404-410. · Zbl 1012.62011 · doi:10.1023/A:1022486321702 [30] Sunoj, S. M. and Linu, M. N. (2012). Dynamic cumulative residual Renyi’s entropy. Statistics 46 , 41-56. · Zbl 1307.62240 · doi:10.1080/02331888.2010.494730 [31] You, Y., Li, X. and Balakrishnan, N. (2014). On extremes of bivariate residual lifetimes from generalized Marshall-Olkin and time transformed exponential models. Metrika 77 , 1041-1056. · Zbl 1305.62361 · doi:10.1007/s00184-014-0485-9 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.