×

Surface order scaling in stochastic geometry. (English) Zbl 1356.60041

Summary: Let \(\mathcal{P}_{\lambda}:=\mathcal{P}_{\lambda\kappa}\) denote a Poisson point process of intensity \(\lambda\kappa\) on \([0,1]^d\), \(d\geq 2\), with \(\kappa\) a bounded density on \([0,1]^d\) and \(\lambda\in (0,\infty)\). Given a closed subset \(\mathcal{M}\subset [0,1]^d\) of Hausdorff dimension \((d-1)\), we consider general statistics \(\sum_{x\in \mathcal{P}_{\lambda}}\xi(x,\mathcal{P}_{\lambda},\mathcal{M})\), where the score function \(\xi\) vanishes unless the input \(x\) is close to \(\mathcal{M}\) and where \(\xi\) satisfies a weak spatial dependency condition. We give a rate of normal convergence for the rescaled statistics \(\sum_{x\in \mathcal{P}_{\lambda}}\xi(\lambda^{1/d}x,\lambda^{1/d}\mathcal{P}_{\lambda},\lambda^{1/d}\mathcal{M})\) as \(\lambda\to \infty\). When \(\mathcal{M}\) is of class \(C^{2}\), we obtain weak laws of large numbers and variance asymptotics for these statistics, showing that growth is surface order, that is, of order \(\text{Vol}(\lambda^{1/d}\mathcal{M})\). We use the general results to deduce variance asymptotics and central limit theorems for statistics arising in stochastic geometry, including Poisson-Voronoi volume and surface area estimators, answering questions in [M. Heveling and M. Reitzner, Ann. Appl. Probab. 19, No. 2, 719–736 (2009; Zbl 1172.60003)] and [M. Reitzner et al., Adv. Appl. Probab. 44, No. 4, 938–953 (2012; Zbl 1280.60013)]. The general results also yield the limit theory for the number of maximal points in a sample.

MSC:

60F05 Central limit and other weak theorems
60D05 Geometric probability and stochastic geometry
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)

References:

[1] Baccelli, F., Tchoumatchenko, K. and Zuyev, S. (2000). Markov paths on the Poisson-Delaunay graph with applications to routing in mobile networks. Adv. in Appl. Probab. 32 1-18. · Zbl 0959.60008 · doi:10.1239/aap/1013540019
[2] Bai, Z.-D., Hwang, H.-K., Liang, W.-Q. and Tsai, T.-H. (2001). Limit theorems for the number of maxima in random samples from planar regions. Electron. J. Probab. 6 41 pp. (electronic). · Zbl 0986.60007 · doi:10.1214/EJP.v6-76
[3] Barbour, A. D. and Xia, A. (2001). The number of two-dimensional maxima. Adv. in Appl. Probab. 33 727-750. · Zbl 1005.60028 · doi:10.1239/aap/1011994025
[4] Barbour, A. D. and Xia, A. (2006). Normal approximation for random sums. Adv. in Appl. Probab. 38 693-728. · Zbl 1106.60029 · doi:10.1239/aap/1158684998
[5] Baryshnikov, Y. (2000). Supporting-points processes and some of their applications. Probab. Theory Related Fields 117 163-182. · Zbl 0961.60017 · doi:10.1007/s004400000047
[6] Baryshnikov, Y. and Yukich, J. E. (2005). Gaussian limits for random measures in geometric probability. Ann. Appl. Probab. 15 213-253. · Zbl 1068.60028 · doi:10.1214/105051604000000594
[7] Baryshnikov, Y. and Yukich, J. E. (2007). Maximal points and Gaussian fields. Unpublished manuscript. Available at . · Zbl 1033.60060
[8] Chen, W.-M., Hwang, H.-K. and Tsai, T.-H. (2003). Efficient maxima-finding algorithms for random planar samples. Discrete Math. Theor. Comput. Sci. 6 107-122 (electronic). · Zbl 1036.68124
[9] Devroye, L. (1993). Records, the maximal layer, and uniform distributions in monotone sets. Comput. Math. Appl. 25 19-31. · Zbl 0769.60044 · doi:10.1016/0898-1221(93)90195-2
[10] Ehrgott, M. (2000). Multicriteria Optimization. Lecture Notes in Economics and Mathematical Systems 491 . Springer, Berlin. · Zbl 0956.90039
[11] Fremlin, D. H. (1997). Skeletons and central sets. Proc. Lond. Math. Soc. (3) 74 701-720. · Zbl 0949.54050 · doi:10.1112/S0024611597000233
[12] Heveling, M. and Reitzner, M. (2009). Poisson-Voronoi approximation. Ann. Appl. Probab. 19 719-736. · Zbl 1172.60003 · doi:10.1214/08-AAP561
[13] Hug, D., Last, G. and Weil, W. (2004). A local Steiner-type formula for general closed sets and applications. Math. Z. 246 237-272. · Zbl 1059.53061 · doi:10.1007/s00209-003-0597-9
[14] Hwang, H.-K. and Tsai, T.-H. (2010). Multivariate records based on dominance. Electron. J. Probab. 15 1863-1892. · Zbl 1225.60043 · doi:10.1214/EJP.v15-825
[15] Jiménez, R. and Yukich, J. E. (2011). Nonparametric estimation of surface integrals. Ann. Statist. 39 232-260. · Zbl 1209.62059 · doi:10.1214/10-AOS837
[16] Khmaladze, E. and Toronjadze, N. (2001). On the almost sure coverage property of Voronoi tessellation: The \(\mathbb{R}^{1}\) case. Adv. in Appl. Probab. 33 756-764. · Zbl 0993.60011 · doi:10.1239/aap/1011994027
[17] McGivney, K. and Yukich, J. E. (1999). Asymptotics for Voronoi tessellations on random samples. Stochastic Process. Appl. 83 273-288. · Zbl 0999.60007 · doi:10.1016/S0304-4149(99)00035-6
[18] Penrose, M. D. (2007). Laws of large numbers in stochastic geometry with statistical applications. Bernoulli 13 1124-1150. · Zbl 1143.60013 · doi:10.3150/07-BEJ5167
[19] Penrose, M. D. (2007). Gaussian limits for random geometric measures. Electron. J. Probab. 12 989-1035 (electronic). · Zbl 1153.60015 · doi:10.1214/EJP.v12-429
[20] Penrose, M. D. and Yukich, J. E. (2001). Central limit theorems for some graphs in computational geometry. Ann. Appl. Probab. 11 1005-1041. · Zbl 1044.60016
[21] Penrose, M. D. and Yukich, J. E. (2003). Weak laws of large numbers in geometric probability. Ann. Appl. Probab. 13 277-303. · Zbl 1029.60008 · doi:10.1214/aoap/1042765669
[22] Penrose, M. D. and Yukich, J. E. (2005). Normal approximation in geometric probability. In Stein’s Method and Applications (A. D. Barbour and L. H. Y. Chen, eds.). Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap. 5 37-58. Singapore Univ. Press, Singapore. · doi:10.1142/9789812567673_0003
[23] Penrose, M. D. and Yukich, J. E. (2013). Limit theory for point processes in manifolds. Ann. Appl. Probab. 23 2161-2211. · Zbl 1285.60021 · doi:10.1214/12-AAP897
[24] Pomerol, J.-C. and Barba-Romero, S. (2000). Multicriterion Decision in Management . Kluwer Academic, Boston. · Zbl 0986.90014
[25] Preparata, F. P. and Shamos, M. I. (1985). Computational Geometry : An Introduction . Springer, New York. · Zbl 0575.68059
[26] Reitzner, M., Spodarev, E. and Zaporozhets, D. (2012). Set reconstruction by Voronoi cells. Adv. in Appl. Probab. 44 938-953. · Zbl 1280.60013 · doi:10.1239/aap/1354716584
[27] Schulte, M. (2012). A central limit theorem for the Poisson-Voronoi approximation. Adv. in Appl. Math. 49 285-306. · Zbl 1253.60008 · doi:10.1016/j.aam.2012.08.001
[28] Sholomov, L. A. (1983). Survey of estimational results in choice problems. Engineering Cybernetics 21 51-75. · Zbl 0576.90054
[29] Thäle, C. and Yukich, J. (2014). Asymptotic theory for statistics of the Poisson-Voronoi approximation. · Zbl 1356.60020 · doi:10.3150/15-BEJ732
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.