## Objective Bayesian inference for a generalized marginal random effects model.(English)Zbl 1357.62103

Summary: An objective Bayesian inference is proposed for the generalized marginal random effects model $$p(\mathbf {x}|\mu,\sigma_{\lambda})=f((\mathbf {x}-\mu\mathbf {1})^{T}(\mathbf {V}+\sigma_{\lambda}^{2}\mathbf {I})^{-1}(\mathbf {x}-\mu\mathbf {1}))/\sqrt{\det(\mathbf {V}+\sigma_{\lambda}^{2}\mathbf {I})}$$. The matrix $$\mathbf {V}$$ is assumed to be known, and the goal is to infer $$\mu$$ given the observations $$\mathbf {x}=(x_{1},\dots,x_{n})^{T}$$, while $$\sigma_{\lambda}$$ is a nuisance parameter. In metrology this model has been applied for the adjustment of inconsistent data $$x_{1},\dots,x_{n}$$, where the matrix $$\mathbf {V}$$ contains the uncertainties quoted for $$x_{1},\dots,x_{n}$$.
We show that the reference prior for grouping $$\{\mu,\sigma_{\lambda}\}$$ is given by $$\pi(\mu,\sigma_{\lambda})\propto\sqrt{\mathbf {F}_{22}}$$, where $$\mathbf {F}_{22}$$ denotes the lower right element of the Fisher information matrix $$\mathbf {F}$$. We give an explicit expression for the reference prior, and we also prove propriety of the resulting posterior as well as the existence of mean and variance of the marginal posterior for $$\mu$$. Under the additional assumption of normality, we relate the resulting reference analysis to that known for the conventional balanced random effects model in the asymptotic case when the number of repeated within-class observations for that model tends to infinity.
We investigate the frequentist properties of the proposed inference for the generalized marginal random effects model through simulations, and we also study its robustness when the underlying distributional assumptions are violated. Finally, we apply the model to the adjustment of current measurements of the Planck constant.

### MSC:

 62F15 Bayesian inference 62F25 Parametric tolerance and confidence regions

R
Full Text:

### References:

 [1] Andrews, G., Askey, R., and Roy, R. (2000). Special Functions . Cambridge: Cambridge University Press. · Zbl 1075.33500 [2] Arellano-Valle, R. B., del Pino, G., and Iglesias, P. (2006). “Bayesian inference in spherical linear models: robustness and conjugate analysis.” Journal of Multivariate Analysis , 97: 179-197. · Zbl 1078.62022 · doi:10.1016/j.jmva.2004.12.002 [3] Berger, J. and Bernardo, J. M. (1992a). “Ordered group reference priors with application to the multinomial problem.” Biometrika , 79: 25-37. · Zbl 0763.62014 · doi:10.1093/biomet/79.1.25 [4] - (1992b). “Reference priors in a variance components problem.” In: Goel, P. (ed.), Proceedings of the Indo-USA Workshop on Bayesian Analysis in Statistics and Econometrics , 323-340. New-York: Springer. [5] Bernardo, J. and Smith, A. (2000). Bayesian theory . Chichester: John Wiley. · Zbl 0943.62009 [6] Browne, W. J. and Draper, D. (2006). “A comparison of Bayesian and likelihood-based methods for fitting multilevel models.” Bayesian Analysis , 1: 473-514. · Zbl 1331.62125 · doi:10.1214/06-BA117 [7] Cochran, W. G. (1937). “Problems arising in the analysis of a series of similar experiments.” Journal of the Royal Statistical Society - Supplement , 4: 102-118. · Zbl 0019.13003 [8] - (1954). “The combination of estimates from different experiments.” Biometrics , 10: 109-129. · Zbl 0059.12505 · doi:10.2307/3001666 [9] Datta, H. S. and Gosh, M. (1995). “Some remarks on noninformative priors.” Journal of the American Statistical Association , 90: 1357-1363. · Zbl 0878.62003 · doi:10.2307/2291526 [10] Eltoft, T., Kim, T., and Lee, T.-W. (2006). “On the multivariate Laplace distribution.” IEEE Signal Processing Letters , 13: 300-303. [11] Evans, M. and Swartz, T. (2000). Approximating Integrals via Monte Carlo and Deterministic Methods . New York: Oxford University Press. · Zbl 0958.65009 [12] Fernández, C. and Steel, M. F. J. (1999). “Reference priors for the general location-scale model.” Statistics & Probability Letters , 43: 377-384. · Zbl 1054.62527 · doi:10.1016/S0167-7152(98)00276-4 [13] Gelman, A. (2006). “Prior distributions for variance parameters in hierarchical models.” Bayesian Analysis , 1: 515-533. · Zbl 1331.62139 · doi:10.1214/06-BA117A [14] Gómez, E., Gómez-Villegas, M. A., and Marín, J. M. (2003). “A survey on continuous elliptical vector distributions.” Revista Matemática Complutense , 16: 345-361. · Zbl 1041.60016 · doi:10.5209/rev_REMA.2003.v16.n1.16889 [15] Gupta, A., Varga, T., and Bodnar, T. (2013). Elliptically Contoured Models in Statistics and Portfolio Theory . New York: Springer. · Zbl 1306.62028 · doi:10.1007/978-1-4614-8154-6 [16] Hill, B. M. (1965). “Inference about variance components in the one-way model.” Journal of the American Statistical Association , 60: 806-825. · Zbl 0127.36004 · doi:10.2307/2283247 [17] Kacker, R. N. (2004). “Combining information from interlaboratory evaluations using a random effects model.” Metrologia , 41: 132-136. [18] Mills, I. M., Mohr, P. J., Quinn, T. J., Taylor, B. N., and Williams, E. R. (2006). “Redefinition of the kilogram, ampere, kelvin and mole: a proposed approach to implementing CIPM recommendation 1 (CI-2005).” Metrologia , 43: 227-246. [19] Mohr, P. J., Taylor, B. N., and Newell, D. B. (2012). “CODATA recommended values of the fundamental physical constants: 2010.” Reviews of Modern Physics , 84: 1527-1605. [20] Osiewalski, J. and Steel, M. F. (1993). “Robust Bayesian inference in elliptical regression models.” Journal of Econometrics , 57: 345-363. · Zbl 0776.62029 · doi:10.1016/0304-4076(93)90070-L [21] Possolo, A. (2013). “Five examples of assessment and expression of measurement uncertainty.” Applied Stochastic Models in Business and Industry , 29: 1-18. · doi:10.1002/asmb.1947 [22] R Development Core Team (2008). R: A Language and Environment for Statistical Computing . R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. URL [23] Rao, P. S. R. S. (1997). Variance Components Estimation: Mixed Models, Methodologies, and Applications . London: Chapman and Hall. · Zbl 0996.62501 [24] Robert, C. P. and Casella, G. (2004). Monte Carlo Statistical Methods . New York: Springer, 2nd edition. · Zbl 1096.62003 [25] Rukhin, A. L. and Possolo, A. (2011). “Laplace random effects models for interlaboratory studies.” Computational Statistics & Data Analysis , 55: 1815-1827. · Zbl 1328.62179 · doi:10.1016/j.csda.2010.11.016 [26] Searle, S. R., Casella, G., and Mc Culloch, C. E. (2006). Variance Components . New Jersey: John Wiley & Sons. [27] Tiao, G. C. and Tan, W. Y. (1965). “Bayesian analysis of random-effect models in the analysis of variance. I: Posterior distribution of variance components.” Biometrika , 52: 37-53. · Zbl 0144.42204 · doi:10.1093/biomet/52.1-2.37 [28] Toman, B., Fischer, J., and Elster, C. (2012). “Alternative analyses of measurements of the Planck constant.” Metrologia , 49: 567-571. [29] Toman, B. and Possolo, A. (2009). “Laboratory effects models for interlaboratory comparisons.” Accreditation and Quality Assurance , 14: 553-563. [30] Yates, F. and Cochran, W. G. (1938). “The analysis of groups of experiments.” Journal of Agricultural Science , 28: 556-580. [31] Ye, K. Y. (1990). Noninformative priors in Bayesian analysis . Ph.D. Dissertation, Purdue University.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.