Bayesian registration of functions and curves. (English) Zbl 1357.62151

Summary: Bayesian analysis of functions and curves is considered, where warping and other geometrical transformations are often required for meaningful comparisons. The functions and curves of interest are represented using the recently introduced square root velocity function, which enables a warping invariant elastic distance to be calculated in a straightforward manner. We distinguish between various spaces of interest: the original space, the ambient space after standardizing, and the quotient space after removing a group of transformations. Using Gaussian process models in the ambient space and Dirichlet priors for the warping functions, we explore Bayesian inference for curves and functions. Markov chain Monte Carlo algorithms are introduced for simulating from the posterior. We also compare ambient and quotient space estimators for mean shape, and explain their frequent similarity in many practical problems using a Laplace approximation. Simulation studies are carried out, as well as practical alignment of growth rate functions and shape classification of mouse vertebra outlines in evolutionary biology. We also compare the performance of our Bayesian method with some alternative approaches.


62G05 Nonparametric estimation
62F15 Bayesian inference


fda (R); LIBSVM; shapes
Full Text: DOI arXiv Euclid


[1] Allassonnière, S., Amit, Y., and Trouvé, A. (2007). “Towards a coherent statistical framework for dense deformable template estimation.” Journal of the Royal Statistical Society: Series B (Statistical Methodology) , 69(1):3-29.
[2] Allassonnière, S., Kuhn, E., and Trouvé, A. (2010). “Bayesian consistent estimation in deformable models using stochastic algorithms: applications to medical images.” Journal de la Société Française de Statistique , 151(1):1-16. · Zbl 1316.62152
[3] Bhattacharya, R. and Patrangenaru, V. (2003). “Large sample theory of intrinsic and extrinsic sample means on manifolds. I.” The Annals of Statistics , 31(1):1-29. · Zbl 1020.62026 · doi:10.1214/aos/1046294456
[4] Bradley, S. P., Hax, A. C., and Magnanti, T. L. (1977). Applied Mathematical Programming . Addison-Wesley, Reading, MA.
[5] Chang, C.-C. and Lin, C.-J. (2001). LIBSVM: a library for support vector machines . Software available at .
[6] Cheng, W., Dryden, I. L., Hitchcock, D. B., and Le, H. (2014). “Analysis of proteomics data: Bayesian alignment of functions.” Electronic Journal of Statistics , 8:1734-1741. · Zbl 1305.62366 · doi:10.1214/14-EJS900C
[7] Cheng, W., Dryden, I. L., and Huang, X. (2015). “Supplementary materials: Bayesian registration of functions and curves.” Bayesian Analysis . · Zbl 1357.62151 · doi:10.1214/15-BA957
[8] Claeskens, G., Silverman, B. W., and Slaets, L. (2010). “A multiresolution approach to time warping achieved by a Bayesian prior-posterior transfer fitting strategy.” Journal of the Royal Statistical Society: Series B (Statistical Methodology) , 72(5):673-694. · doi:10.1111/j.1467-9868.2010.00752.x
[9] Czogiel, I., Dryden, I. L., and Brignell, C. J. (2011). “Bayesian matching of unlabeled marked point sets using random fields, with an application to molecular alignment.” The Annals of Applied Statistics , 5:2603-2629. · Zbl 1234.62141 · doi:10.1214/11-AOAS486
[10] Dryden, I. L. (2014). shapes: Statistical shape analysis . R package version 1.1-10.
[11] Dryden, I. L. and Mardia, K. V. (1991). “General shape distributions in a plane.” Advances in Applied Probability , 23:259-276. · Zbl 0724.60014 · doi:10.2307/1427747
[12] Dryden, I. L. and Mardia, K. V. (1992). “Size and shape analysis of landmark data.” Biometrika , 79:57-68. · Zbl 0753.62037 · doi:10.1093/biomet/79.1.57
[13] Dryden, I. L. and Mardia, K. V. (1998). Statistical Shape Analysis . Wiley, Chichester. · Zbl 0901.62072
[14] Fréchet, M. (1948). “Les éléments aléatoires de nature quelconque dans un espace distancié.” Annales de l’Institut Henri Poincaré , 10:215-310.
[15] Gasser, T., Müller, H. G., Köhler, W., Prader, A., Largo, R., and Molinari, L. (1985). “An analysis of the mid-growth and adolescent spurts of height based on acceleration.” Annals of Human Biology , 12:129-148.
[16] Geyer, C. J. and Thompson, E. A. (1995). “Annealing Markov chain Monte Carlo with applications to ancestral inference.” Journal of the American Statistical Association , 90(431):909-920. · Zbl 0850.62834 · doi:10.2307/2291325
[17] Glover, G. (1999). “Deconvolution of impulse response in event-related BOLD fMRI”. NeuroImage , 9(4):416-429.
[18] Goodall, C. R. (1991). “Procrustes methods in the statistical analysis of shape (with discussion).” Journal of the Royal Statistical Society: Series B (Statistical Methodology) , 53:285-339. · Zbl 0800.62346
[19] Griffin, J. E. (2014). “An adaptive truncation method for inference in Bayesian nonparametric models.” Statistics and Computing , · Zbl 1342.62047 · doi:10.1007/s11222-014-9519-4
[20] Huckemann, S., Hotz, T., and Munk, A. (2010). “Intrinsic shape analysis: geodesic PCA for Riemannian manifolds modulo isometric Lie group actions.” Statistica Sinica , 20(1):1-58. · Zbl 1180.62087
[21] Ishwaran, H. and James, L. F. (2001). “Gibbs sampling methods for stick-breaking priors.” Journal of the American Statistical Association , 96(453):161-173. · Zbl 1014.62006 · doi:10.1198/016214501750332758
[22] James, G. M. (2007). “Curve alignment by moments.” The Annals of Applied Statistics , 1(2):480-501. · Zbl 1126.62001 · doi:10.1214/07-AOAS127
[23] Jermyn, I. H., Kurtek, S., Klassen, E., and Srivastava, A. (2012). “Elastic shape matching of parameterized surfaces using square root normal fields.” In: Fitzgibbon, A. W., Lazebnik, S., Perona, P., Sato, Y., and Schmid, C., editors, Computer Vision - ECCV 2012 - 12th European Conference on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part V , volume 7576 of Lecture Notes in Computer Science , pages 804-817. Springer.
[24] Joshi, S., Klassen, E., Srivastava, A., and Jermyn, I. (2007). “A novel representation for Riemannian analysis of elastic curves in \(\mathbb{R}^{n}\).” In: Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE Conference on , pages 1-7.
[25] Kalli, M., Griffin, J., and Walker, S. (2011). “Slice sampling mixture models.” Statistics and Computing , 21(1):93-105. · Zbl 1256.65006 · doi:10.1007/s11222-009-9150-y
[26] Karcher, H. (1977). “Riemannian center of mass and mollifier smoothing.” Communications on Pure and Applied Mathematics , 30(5):509-541. · Zbl 0354.57005 · doi:10.1002/cpa.3160300502
[27] Kendall, D. G. (1984). “Shape manifolds, Procrustean metrics and complex projective spaces.” Bulletin of the London Mathematical Society , 16:81-121. · Zbl 0579.62100 · doi:10.1112/blms/16.2.81
[28] Kendall, D. G., Barden, D., Carne, T. K., and Le, H. (1999). Shape and Shape Theory . Wiley, Chichester. · Zbl 0940.60006
[29] Kendall, W. S. (1990). “The diffusion of Euclidean shape.” In: Grimmett, G. R. and Welch, D. J. A., editors, Disorder in Physical Systems , pages 203-217, Oxford. Oxford University Press. · Zbl 0717.60065
[30] Kenobi, K. and Dryden, I. L. (2012). “Bayesian matching of unlabeled point sets using Procrustes and configuration models.” Bayesian Analysis , 7(3):547-565. · Zbl 1330.62138 · doi:10.1214/12-BA718
[31] Klassen, E., Srivastava, A., Mio, W., and Joshi, S. H. (2003). “Analysis of planar shapes using geodesic paths on shape spaces.” IEEE Transactions on Pattern Analysis and Machine Intelligence , 26(3):372-383.
[32] Kneip, A. and Gasser, T. (1992). “Statistical tools to analyze data representing a sample of curves.” The Annals of Statistics , 20(3):1266-1305. · Zbl 0785.62042 · doi:10.1214/aos/1176348769
[33] Kneip, A., Li, X., MacGibbon, K. B., and Ramsay, J. O. (2000). “Curve registration by local regression.” Canadian Journal of Statistics , 28(1):19-29. · Zbl 0963.62035 · doi:10.2307/3315879
[34] Koch, I., Hoffmann, P., and Marron, J. S. (2014). “Proteomics profiles from mass spectrometry.” Electronic Journal of Statistics , 8(2):1703-1713. · Zbl 1305.62370 · doi:10.1214/14-EJS900
[35] Le, H.-L. (1991). “A stochastic calculus approach to the shape distribution induced by a complex normal model.” Mathematical Proceedings of the Cambridge Philosophical Society , 109:221-228. · Zbl 0723.60015 · doi:10.1017/S0305004100069681
[36] Le, H.-L. and Kendall, D. G. (1993). “The Riemannian structure of Euclidean shape spaces: a novel environment for statistics.” The Annals of Statistics , 21:1225-1271. · Zbl 0831.62003 · doi:10.1214/aos/1176349259
[37] Mardia, K. V. and Dryden, I. L. (1989). “The statistical analysis of shape data.” Biometrika , 76:271-282. · Zbl 0666.62056 · doi:10.1093/biomet/76.2.271
[38] Molinari, L., Largo, R. H., and A., P. (1980). “Analysis of the growth spurt at age seven (mid-growth spurt).” Helvetica Paediatrica Acta , 35:325-334.
[39] Ramsay, J. (2013). “Functional data analysis software.” Technical report, McGill University. .
[40] Ramsay, J. O. and Li, X. (1998). “Curve registration.” Journal of the Royal Statistical Society: Series B (Statistical Methodology) , 60(2):351-363. · Zbl 0909.62033 · doi:10.1111/1467-9868.00129
[41] Ramsay, J. O. and Silverman, B. W. (2005). Functional Data Analysis, Second Edition . Springer, New York. · Zbl 1079.62006 · doi:10.1007/b98888
[42] Ramsay, J. O., Wickham, H., Graves, S., and Hooker, G. (2013). fda: Functional Data Analysis . R package version 2.4.0.
[43] Silverman, B. W. (1995). “Incorporating parametric effects into functional principal components analysis.” Journal of the Royal Statistical Society: Series B (Statistical Methodology) , 57(4):673-689. · Zbl 0827.62051
[44] Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and van der Linde, A. (2002). “Bayesian measures of model complexity and fit.” Journal of the Royal Statistical Society: Series B (Statistical Methodology) , 64(4):583-639. · Zbl 1067.62010 · doi:10.1111/1467-9868.00353
[45] Srivastava, A., Klassen, E., Joshi, S. H., and Jermyn, I. H. (2011a). “Shape analysis of elastic curves in Euclidean spaces.” IEEE Transactions on Pattern Analysis and Machine Intelligence , 33(7):1415-1428.
[46] Srivastava, A., Wu, W., Kurtek, S., Klassen, E., and Marron, J. S. (2011b). “Registration of functional data using the Fisher-Rao metric.” Technical report, Florida State University. arXiv:
[47] Stein, M. L. (1999). Interpolation of Spatial Data: Some Theory for Kriging . Springer, New York. · Zbl 0924.62100
[48] Tang, R. and Müller, H.-G. (2008). “Pairwise curve synchronization for functional data.” Biometrika , 95(4):875-889. · Zbl 1437.62625 · doi:10.1093/biomet/asn047
[49] Telesca, D. and Inoue, L. Y. T. (2008). “Bayesian hierarchical curve registration.” Journal of the American Statistical Association , 103(481):328-339. · Zbl 1471.62560 · doi:10.1198/016214507000001139
[50] Thakoor, N., Gao, J., and Jung, S. (2007). “Hidden Markov model-based weighted likelihood discriminant for 2-d shape classification.” IEEE Transactions on Image Processing , 16(11):2707-2719. · doi:10.1109/TIP.2007.908076
[51] Tucker, J. D. (2014). fda: Functional Data Analysis . R package version 1.4.2.
[52] Tuddenham, R. D. and Snyder, M. M. (1954). “Physical growth of California boys and girls from birth to age 18.” University of California Publications in Child Development , 1:183-364.
[53] van der Vaart, A. W. (1998). Asymptotic Statistics , volume 3 of Cambridge Series in Statistical and Probabilistic Mathematics . Cambridge University Press, Cambridge. · Zbl 0910.62001 · doi:10.1017/CBO9780511802256
[54] Walker, S. G. (2007). “Sampling the Dirichlet mixture model with slices.” Communications in Statistics - Simulation and Computation , 36(1):45-54. · Zbl 1113.62058 · doi:10.1080/03610910601096262
[55] Younes, L. (1998). “Computable elastic distances between shapes.” SIAM Journal on Applied Mathematics , 58(2):565-586 (electronic). · Zbl 0907.68158 · doi:10.1137/S0036139995287685
[56] Zhou, R. R., Serban, N., Gebraeel, N., and Müller, H.-G. (2014). “A functional time warping approach to modeling and monitoring truncated degradation signals.” Technometrics , 56(1):67-77. · doi:10.1080/00401706.2013.805661
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.