Ledesma, Diego S. A heat flow approach to the Godbillon-Vey class. (English) Zbl 1358.58016 Electron. Commun. Probab. 22, Paper No. 2, 6 p. (2017). Summary: We give a heat flow derivation for the Godbillon Vey class. In particular we prove that if \((M,g)\) is a compact Riemannian manifold with a codimension 1 foliation \(\mathcal{F}\), defined by an integrable 1-form \(\omega\) such that \(||\omega||=1\), then the Godbillon-Vey class can be written as \([-\mathcal{A} \omega \wedge d\omega]_{dR}\) for an operator \(\mathcal{A} :\Omega^*(M)\rightarrow \Omega^*(M)\) induced by the heat flow. MSC: 58J65 Diffusion processes and stochastic analysis on manifolds 53C12 Foliations (differential geometric aspects) 60H30 Applications of stochastic analysis (to PDEs, etc.) 60J60 Diffusion processes Keywords:foliation; diffusion process; stochastic calculus; heat flow derivation; Godbillon Vey class PDF BibTeX XML Cite \textit{D. S. Ledesma}, Electron. Commun. Probab. 22, Paper No. 2, 6 p. (2017; Zbl 1358.58016) Full Text: DOI Euclid OpenURL