Berkesch, Christine; Schreyer, Frank-Olaf Syzygies, finite length modules, and random curves. (English) Zbl 1359.13029 Eisenbud, David (ed.) et al., Commutative algebra and noncommutative algebraic geometry. Volume I: Expository articles. Cambridge: Cambridge University Press (ISBN 978-1-107-06562-8/hbk). Mathematical Sciences Research Institute Publications 67, 25-52 (2015). Summary: We apply the theory of Gröbner bases to the computation of free resolutions over a polynomial ring, the defining equations of a canonically embedded curve, and the unirationality of the moduli space of curves of a fixed small genus.For the entire collection see [Zbl 1333.13002]. Cited in 1 ReviewCited in 5 Documents MSC: 13P10 Gröbner bases; other bases for ideals and modules (e.g., Janet and border bases) 13D05 Homological dimension and commutative rings 13C40 Linkage, complete intersections and determinantal ideals 14-04 Software, source code, etc. for problems pertaining to algebraic geometry 14M20 Rational and unirational varieties 14H10 Families, moduli of curves (algebraic) 14Q05 Computational aspects of algebraic curves Software:Macaulay2; RandomCurves PDF BibTeX XML Cite \textit{C. Berkesch} and \textit{F.-O. Schreyer}, Math. Sci. Res. Inst. Publ. 67, 25--52 (2015; Zbl 1359.13029) Full Text: arXiv