×

Cleaning large correlation matrices: tools from random matrix theory. (English) Zbl 1359.15031

Summary: This review covers recent results concerning the estimation of large covariance matrices using tools from Random Matrix Theory (RMT). We introduce several RMT methods and analytical techniques, such as the Replica formalism and Free Probability, with an emphasis on the Marčenko-Pastur equation that provides information on the resolvent of multiplicatively corrupted noisy matrices. Special care is devoted to the statistics of the eigenvectors of the empirical correlation matrix, which turn out to be crucial for many applications. We show in particular how these results can be used to build consistent “Rotationally Invariant” estimators (RIE) for large correlation matrices when there is no prior on the structure of the underlying process. The last part of this review is dedicated to some real-world applications within financial markets as a case in point. We establish empirically the efficacy of the RIE framework, which is found to be superior in this case to all previously proposed methods. The case of additively (rather than multiplicatively) corrupted noisy matrices is also dealt with in a special Appendix. Several open problems and interesting technical developments are discussed throughout the paper.

MSC:

15B52 Random matrices (algebraic aspects)
62G05 Nonparametric estimation
91G10 Portfolio theory
62P05 Applications of statistics to actuarial sciences and financial mathematics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Van der Vaart, A. W., Asymptotic Statistics, vol. 3 (2000), Cambridge university press · Zbl 0910.62001
[2] Amemiya, T., Advanced Econometrics (1985), Harvard University Press
[3] Hansen, L. P., Large sample properties of generalized method of moments estimators, Econometrica, 1029-1054 (1982) · Zbl 0502.62098
[4] Friedman, J.; Hastie, T.; Tibshirani, R., (The Elements of Statistical Learning. The Elements of Statistical Learning, Springer Series in Statistics, vol. 1 (2001), Springer: Springer Berlin) · Zbl 0973.62007
[5] Markowitz, H., Portfolio selection, J. Finance, 7, 1, 77-91 (1952)
[7] Ciliberti, S.; Kondor, I.; Mézard, M., On the feasibility of portfolio optimization under expected shortfall, Quant. Finance, 7, 4, 389-396 (2007) · Zbl 1190.91116
[8] Pourahmadi, M., High-Dimensional Covariance Estimation: With High-Dimensional Data (2013), John Wiley & Sons · Zbl 1276.62031
[9] Wishart, J., The generalised product moment distribution in samples from a normal multivariate population, Biometrika, 32-52 (1928)
[10] Anderson, T. W., An Introduction to Multivariate Statistics, 675 (1984), Wiley: Wiley New York
[11] Stein, C., Inadmissibility of the usual estimator for the mean of a multivariate normal distribution, (Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, vol. 1 (1956)), 197-206
[12] Efron, B.; Morris, C. N., Stein’s Paradox in Statistics (1977), WH Freeman
[13] James, W.; Stein, C., Estimation with quadratic loss, (Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1 (1961)), 361-379 · Zbl 1281.62026
[14] Efron, B.; Morris, C., Multivariate empirical Bayes and estimation of covariance matrices, Ann. Statist., 22-32 (1976) · Zbl 0322.62041
[15] Haff, L., Minimax estimators for a multinormal precision matrix, J. Multivariate Anal., 7, 3, 374-385 (1977) · Zbl 0402.62028
[16] Haff, L., Empirical Bayes estimation of the multivariate normal covariance matrix, Ann. Statist., 586-597 (1980) · Zbl 0441.62045
[17] Ledoit, O.; Wolf, M., A well-conditioned estimator for large-dimensional covariance matrices, J. Multivariate Anal., 88, 2, 365-411 (2004) · Zbl 1032.62050
[18] Marchenko, V. A.; Pastur, L. A., Distribution of eigenvalues for some sets of random matrices, Mat. Sb., 114, 4, 507-536 (1967) · Zbl 0152.16101
[19] Anderson, T. W., Asymptotic theory for principal component analysis, Ann. Math. Stat., 122-148 (1963) · Zbl 0202.49504
[20] Yin, Y. Q., Limiting spectral distribution for a class of random matrices, J. Multivariate Anal., 20, 1, 50-68 (1986) · Zbl 0614.62060
[21] Silverstein, J. W., Strong convergence of the empirical distribution of eigenvalues of large dimensional random matrices, J. Multivariate Anal., 55, 2, 331-339 (1995) · Zbl 0851.62015
[22] Sengupta, A.; Mitra, P. P., Distributions of singular values for some random matrices, Phys. Rev. E, 60, 3, 3389 (1999)
[23] Laloux, L.; Cizeau, P.; Bouchaud, J.-P.; Potters, M., Noise dressing of financial correlation matrices, Phys. Rev. Lett., 83, 7, 1467 (1999)
[24] Plerou, V.; Gopikrishnan, P.; Rosenow, B.; Amaral, L. A.N.; Guhr, T.; Stanley, H. E., Random matrix approach to cross correlations in financial data, Phys. Rev. E, 65, 6, Article 066126 pp. (2002)
[25] Bouchaud, J.-P.; Potters, M., Theory of Financial Risk and Derivative Pricing: From Statistical Physics to Risk Management (2003), Cambridge University Press · Zbl 1194.91008
[26] Johnstone, I. M., On the distribution of the largest eigenvalue in principal components analysis, Ann. Statist., 295-327 (2001) · Zbl 1016.62078
[27] Tracy, C. A.; Widom, H., Level-spacing distributions and the Airy kernel, Comm. Math. Phys., 159, 1, 151-174 (1994) · Zbl 0789.35152
[28] Laloux, L.; Cizeau, P.; Potters, M.; Bouchaud, J.-P., Random matrix theory and financial correlations, Int. J. Theor. Appl. Finance, 3, 03, 391-397 (2000) · Zbl 0970.91059
[29] Bouchaud, J.-P.; Potters, M., Financial applications of random matrix theory: a short review, (The Oxford Handbook of Random Matrix Theory (2011), Oxford University Press), 824-850 · Zbl 1235.91177
[30] Silverstein, J. W.; Choi, S.-I., Analysis of the limiting spectral distribution of large dimensional random matrices, J. Multivariate Anal., 54, 2, 295-309 (1995) · Zbl 0872.60013
[31] Mestre, X., Improved estimation of eigenvalues and eigenvectors of covariance matrices using their sample estimates, IEEE Trans. Inform. Theory, 54, 11, 5113-5129 (2008) · Zbl 1318.62191
[32] Yao, J.; Kammoun, A.; Najim, J., Eigenvalue estimation of parameterized covariance matrices of large dimensional data, IEEE Trans. Signal Process., 60, 11, 5893-5905 (2012) · Zbl 1393.94504
[33] El Karoui, N., Spectrum estimation for large dimensional covariance matrices using random matrix theory, Ann. Statist., 2757-2790 (2008) · Zbl 1168.62052
[34] Silverstein, J. W., Eigenvalues and eigenvectors of large dimensional sample covariance matrices, Contemp. Math., 50, 153-159 (1986)
[35] Silverstein, J. W., On the eigenvectors of large dimensional sample covariance matrices, J. Multivariate Anal., 30, 1, 1-16 (1989) · Zbl 0678.60011
[36] Paul, D., Asymptotics of sample eigenstructure for a large dimensional spiked covariance model, Statist. Sinica, 1617-1642 (2007) · Zbl 1134.62029
[37] Ledoit, O.; Péché, S., Eigenvectors of some large sample covariance matrix ensembles, Probab. Theory Related Fields, 151, 1-2, 233-264 (2011) · Zbl 1229.60009
[38] Bun, J.; Allez, R.; Bouchaud, J. P.; Potters, M., Rotational invariant estimator for general noisy matrices, IEEE Trans. Inform. Theory, 62, 12, 7475-7490 (2016) · Zbl 1359.94066
[39] Bun, J.; Knowles, A., An optimal rotational invariant estimator for general covariance matrices, in preparation (2017)
[40] Benaych-Georges, F.; Nadakuditi, R. R., The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices, Adv. Math., 227, 1, 494-521 (2011) · Zbl 1226.15023
[41] Monasson, R.; Villamaina, D., Estimating the principal components of correlation matrices from all their empirical eigenvectors, Europhys. Lett., 112, 5, 50001 (2015)
[42] Brézin, E.; Itzykson, C.; Parisi, G.; Zuber, J.-B., Planar diagrams, Comm. Math. Phys., 59, 1, 35-51 (1978) · Zbl 0997.81548
[43] Wigner, E. P., On the statistical distribution of the widths and spacings of nuclear resonance levels, (Mathematical Proceedings of the Cambridge Philosophical Society, vol. 47 (1951), Cambridge Univ. Press), 790-798 · Zbl 0044.44203
[44] Voiculescu, D., Symmetries of Some Reduced Free Product C*-Algebras (1985), Springer · Zbl 0618.46048
[45] Voiculescu, D., Limit laws for random matrices and free products, Invent. Math., 104, 1, 201-220 (1991) · Zbl 0736.60007
[46] Edwards, S.; Jones, R. C., The eigenvalue spectrum of a large symmetric random matrix, J. Phys. A: Math. Gen., 9, 10, 1595 (1976) · Zbl 0346.60003
[47] Mézard, M.; Virasoro, M. A.; Parisi, G., Spin Glass Theory and Beyond (1987), World Scientific · Zbl 0992.82500
[49] Weidenmüller, H.; Mitchell, G., Random matrices and chaos in nuclear physics: Nuclear structure, Rev. Modern Phys., 81, 2, 539 (2009)
[50] Akemann, G.; Baik, J.; Di Francesco, P., The Oxford Gandbook of Random Matrix Theory (2011), Oxford University Press · Zbl 1236.15062
[51] Dean, D. S.; Majumdar, S. N., Large deviations of extreme eigenvalues of random matrices, Phys. Rev. Lett., 97, 16, Article 160201 pp. (2006) · Zbl 1228.82035
[52] Majumdar, S., Random matrices, the Ulam problem, Directed polymers and Growth models, and Sequence matching, (Les Houches-Session LXXXV (2006), Elsevier), 179-216, (Chapter 4)
[53] Anderson, G. W.; Guionnet, A.; Zeitouni, O., An Introduction to Random Matrices (2010), Cambridge University Press · Zbl 1184.15023
[54] Tao, T., Topics in Random Matrix Theory, vol. 132 (2012), American Mathematical Soc. · Zbl 1256.15020
[55] Tulino, A. M.; Verdú, S., Random matrix theory and wireless communications, Commun. Inform. Theory, 1, 1, 1-182 (2004)
[56] Bai, Z.; Silverstein, J. W., Spectral Analysis of Large Dimensional Random Matrices (2009), Springer
[57] Couillet, R.; Debbah, M., Random Matrix Methods for Wireless Communications (2011), Cambridge University Press: Cambridge University Press Cambridge, MA · Zbl 1252.94001
[58] Hotelling, H., Relations between two sets of variates, Biometrika, 28, 3/4, 321-377 (1936) · Zbl 0015.40705
[59] Wachter, K. W., The limiting empirical measure of multiple discriminant ratios, Ann. Statist., 937-957 (1980) · Zbl 0473.62050
[60] Bouchaud, J.-P.; Laloux, L.; Miceli, M. A.; Potters, M., Large dimension forecasting models and random singular value spectra, Eur. Phys. J. B, 55, 2, 201-207 (2007) · Zbl 1189.91114
[61] Tao, T.; Vu, V., Random matrices: universality of local eigenvalue statistics, Acta Math., 206, 1, 127-204 (2011) · Zbl 1217.15043
[62] Charles, B.; Chafai, D., Around the circular law, Probab. Surv., 9, 1-89 (2012) · Zbl 1243.15022
[63] Voiculescu, D.; Dykema, K.; Nica, A., Free Random Variables (1992), American Mathematical Soc. · Zbl 0795.46049
[64] Speicher, R., Free probability theory, (The Oxford Handbook of Random Matrix Theory (2011), Oxford University Press), 452-470 · Zbl 1241.46039
[65] Zee, A., Law of addition in random matrix theory, Nuclear Phys. B, 474, 3, 726-744 (1996) · Zbl 0925.82092
[66] Burda, Z., Free products of large random matrices-a short review of recent developments, J. Phys.: Conf. Ser., 473, Article 012002 pp. (2013)
[67] Burda, Z.; Görlich, A.; Jarosz, A.; Jurkiewicz, J., Signal and noise in correlation matrix, Physica A, 343, 295-310 (2004)
[68] Guhr, T., Supersymmetry, (The Oxford Handbook of Random Matrix Theory (2011), Oxford University Press), 135-154 · Zbl 1236.81115
[69] Mehta, M. L., Random Matrices, vol. 142 (2004), Academic Press
[70] Dean, D. S.; Majumdar, S. N., Extreme value statistics of eigenvalues of Gaussian random matrices, Phys. Rev. E, 77, 4, Article 041108 pp. (2008)
[72] Allez, R.; Bouchaud, J.-P.; Majumdar, S. N.; Vivo, P., Invariant \(\beta \)-Wishart ensembles, crossover densities and asymptotic corrections to the Marčenko-Pastur law, J. Phys. A, 46, 1, Article 015001 pp. (2012) · Zbl 1259.81084
[73] Cizeau, P.; Bouchaud, J.-P., Theory of Lévy matrices, Phys. Rev. E, 50, 3, 1810 (1994)
[74] Ben Arous, G.; Guionnet, A., The spectrum of heavy tailed random matrices, Comm. Math. Phys., 278, 3, 715-751 (2008) · Zbl 1157.60005
[75] Tarquini, E.; Biroli, G.; Tarzia, M., Level statistics and localization transitions of Lévy matrices, Phys. Rev. Lett., 116, 1, Article 010601 pp. (2016) · Zbl 1356.15018
[76] Bai, Z. D., Convergence rate of expected spectral distributions of large random matrices. Part I. Wigner matrices, Ann. Probab., 625-648 (1993) · Zbl 0779.60024
[77] Bai, Z.; Miao, B.; Yao, J.-F., Convergence rates of spectral distributions of large sample covariance matrices, SIAM J. Matrix Anal. Appl., 25, 1, 105-127 (2003) · Zbl 1059.60036
[78] Dwyer, P. S., Some applications of matrix derivatives in multivariate analysis, J. Amer. Statist. Assoc., 62, 318, 607-625 (1967) · Zbl 0152.36303
[79] Haff, L., An identity for the Wishart distribution with applications, J. Multivariate Anal., 9, 4, 531-544 (1979) · Zbl 0423.62036
[80] Speicher, R., Multiplicative functions on the lattice of non-crossing partitions and free convolution, Math. Ann., 298, 1, 611-628 (1994) · Zbl 0791.06010
[81] Hooft, G., A planar diagram theory for strong interactions, Nuclear Phys. B, 72, 3, 461-473 (1974)
[82] Khorunzhy, A. M.; Pastur, L., On the eigenvalue distribution of the deformed Wigner ensemble of random matrices, Adv. Sov. Math., 19, 97-127 (1994) · Zbl 0813.60036
[83] Brézin, E.; Hikami, S.; Zee, A., Universal correlations for deterministic plus random Hamiltonians, Phys. Rev. E, 51, 6, 5442 (1995)
[84] Zinn-Justin, P., Adding and multiplying random matrices: a generalization of voiculescus formulas, Phys. Rev. E, 59, 5, 4884 (1999)
[85] Burda, Z.; Janik, R.; Nowak, M., Multiplication law and S transform for non-hermitian random matrices, Phys. Rev. E, 84, 6, Article 061125 pp. (2011)
[86] Burda, Z.; Jurkiewicz, J.; Wacław, B., Spectral moments of correlated Wishart matrices, Phys. Rev. E, 71, 2, Article 026111 pp. (2005)
[87] Parisi, G., A sequence of approximated solutions to the SK model for spin glasses, J. Phys. A: Math. Gen., 13, 4, L115 (1980)
[88] Harish-Chandra, Differential operators on a semisimple Lie algebra, Amer. J. Math., 87-120 (1957) · Zbl 0072.01901
[89] Itzykson, C.; Zuber, J.-B., The planar approximation. II, J. Math. Phys., 21, 411-421 (1980) · Zbl 0997.81549
[90] Talagrand, M., The parisi formula, Ann. of Math., 163, 221-263 (2006) · Zbl 1137.82010
[92] Kargin, V., Subordination for the sum of two random matrices, Ann. Probab., 43, 4, 2119-2150 (2015) · Zbl 1320.60022
[93] Paul, D.; Aue, A., Random matrix theory in statistics: a review, J. Statist. Plann. Inference, 150, 1-29 (2014) · Zbl 1287.62011
[94] Yao, J.; Bai, Z.; Zheng, S., Large Sample Covariance Matrices and High-Dimensional Data Analysis, 39 (2015), Cambridge University Press
[95] Vivo, P.; Majumdar, S. N.; Bohigas, O., Large deviations of the maximum eigenvalue in Wishart random matrices, J. Phys. A, 40, 16, 4317 (2007) · Zbl 1115.15019
[96] Majumdar, S. N.; Vivo, P., Number of relevant directions in principal component analysis and wishart random matrices, Phys. Rev. Lett., 108, 20, Article 200601 pp. (2012)
[97] Perret, A.; Schehr, G., Finite N corrections to the limiting distribution of the smallest eigenvalue of Wishart complex matrices, Random Matrices, 1650001 (2015) · Zbl 1381.15031
[98] Wirtz, T.; Guhr, T., Distribution of the smallest eigenvalue in the correlated Wishart model, Phys. Rev. Lett., 111, 9, Article 094101 pp. (2013)
[99] Bloemendal, A.; Knowles, A.; Yau, H. T., Probab. Theory Relat. Fields, 164, 459 (2016)
[100] Huber, P. J., Robust Statistics (2011), Springer
[101] Maronna, R. A.; Martin, D. R.; Yohai, V. J., Robust Statistics: Theory and Methods (2006), John Wiley and Sons · Zbl 1094.62040
[102] Biroli, G.; Bouchaud, J. P.; Potters, M., The student ensemble of correlation matrices: eigenvalue spectrum and Kullback-Leibler entropy, Acta Phys. Polon. Ser. B, 39, 1, 4009-4026 (2008) · Zbl 1373.62283
[103] El Karoui, N., Concentration of measure and spectra of random matrices: applications to correlation matrices, elliptical distributions and beyond, Ann. Appl. Probab., 19, 6, 2362-2405 (2009) · Zbl 1255.62156
[105] Couillet, R.; Pascal, F.; Silverstein, J. W., The random matrix regime of Maronnas M-estimator with elliptically distributed samples, J. Multivariate Anal., 139, 56-78 (2015) · Zbl 1320.62174
[106] Tyler, D. E., A distribution-free \(M\)-estimator of multivariate scatter, Ann. Statist., 15, 1, 234-251 (1987) · Zbl 0628.62053
[108] Couillet, R.; Kammoun, A.; Pascal, F., Second order statistics of robust estimators of scatter. application to glrt detection for elliptical signals, J. Multivariate Anal., 143, 249-274 (2016) · Zbl 1328.62332
[109] Silverstein, J. W.; Bai, Z., On the empirical distribution of eigenvalues of a class of large dimensional random matrices, J. Multivariate Anal., 54, 2, 175-192 (1995) · Zbl 0833.60038
[110] Mingo, J. A.; Nica, A., Annular noncrossing permutations and partitions, and second-order asymptotics for random matrices, Int. Math. Res. Not. IMRN, 2004, 28, 1413-1460 (2004) · Zbl 1071.05006
[111] Ledoit, O.; Wolf, M., Spectrum estimation: A unified framework for covariance matrix estimation and PCA in large dimensions, J. Multivariate Anal., 139, 360-384 (2015) · Zbl 1328.62340
[113] Knowles, A.; Yin, J., Anisotropic local laws for random matrices, Probab. Theory Relat. Fields, 1-96 (2016)
[114] Dobriban, E., Efficient computation of limit spectra of sample covariance matrices, Random Matrices: Theory Appl., 4, 04, Article 1550019 pp. (2015) · Zbl 1330.65029
[115] Biroli, G.; Bouchaud, J.-P.; Potters, M., On the top eigenvalue of heavy-tailed random matrices, Europhys. Lett., 78, 1, 10001 (2007) · Zbl 1244.82029
[116] Bowick, M. J.; Brézin, É., Universal scaling of the tail of the density of eigenvalues in random matrix models, Phys. Lett. B, 268, 1, 21-28 (1991)
[117] Majumdar, S. N.; Schehr, G., Top eigenvalue of a random matrix: large deviations and third order phase transition, J. Stat. Mech. Theory Exp., 2014, 1, P01012 (2014) · Zbl 1456.82019
[118] Nadal, C.; Majumdar, S. N., A simple derivation of the Tracy-Widom distribution of the maximal eigenvalue of a Gaussian unitary random matrix, J. Stat. Mech. Theory Exp., 2011, 04, P04001 (2011) · Zbl 1456.60025
[119] Ramirez, J.; Rider, B.; Virág, B., Beta ensembles, stochastic airy spectrum, and a diffusion, J. Amer. Math. Soc., 24, 4, 919-944 (2011) · Zbl 1239.60005
[120] Johansson, K., Shape fluctuations and random matrices, Comm. Math. Phys., 209, 2, 437-476 (2000) · Zbl 0969.15008
[121] Baik, J.; Ben Arous, G.; Péché, S., Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices, Ann. Probab., 1643-1697 (2005) · Zbl 1086.15022
[122] Péché, S., Universality results for the largest eigenvalues of some sample covariance matrix ensembles, Probab. Theory Related Fields, 143, 3-4, 481-516 (2009) · Zbl 1167.62019
[123] Péché, S., Universality of Local Eigenvalue Statistics for Random Sample Covariance Matrices (2003), EPFL, (Ph.D. thesis)
[124] Hachem, W.; Hardy, A.; Najim, J., A survey on the eigenvalues local behavior of large complex correlated wishart matrices, ESAIM: Proceedings and Surveys, 51, 150-174 (2015) · Zbl 1360.60018
[126] Allez, R.; Bouchaud, J.-P., Eigenvector dynamics under free addition, Random Matrices, 03, 1450010 (2014) · Zbl 1301.60008
[129] Weyl, H., Inequalities between the two kinds of eigenvalues of a linear transformation, Proc. Nat. Acad. Sci., 35, 7, 408-411 (1949) · Zbl 0032.38701
[130] Deutsch, J. M., Quantum statistical mechanics in a closed system, Phys. Rev. A, 43, 4, 2046 (1991)
[131] Gelman, A.; Carlin, J. B.; Stern, H. S.; Rubin, D. B., (Bayesian Data Analysis, vol. 2 (2014), Taylor & Francis) · Zbl 1279.62004
[134] Dicker, L. H., Ridge regression and asymptotic minimax estimation over spheres of growing dimension, Bernoulli, 22, 1, 1-37 (2016) · Zbl 1388.62205
[135] Wiener, N., Extrapolation, Interpolation, and Smoothing of Stationary Time Series, vol. 2 (1949), MIT press: MIT press Cambridge, MA · Zbl 0036.09705
[136] Pafka, S.; Kondor, I., Noisy covariance matrices and portfolio optimization II, Physica A, 319, 487-494 (2003) · Zbl 1008.91039
[137] El Karoui, N., High-dimensionality effects in the Markowitz problem and other quadratic programs with linear constraints: Risk underestimation, Ann. Stat., 38, 6, 3487-3566 (2010) · Zbl 1274.62365
[139] Karoui, N. E., On the realized risk of high-dimensional Markowitz portfolios, SIAM J. Financ. Math., 4, 1, 737-783 (2013) · Zbl 1358.91092
[140] Ledoit, O.; Wolf, M., Nonlinear shrinkage of the covariance matrix for portfolio selection: Markowitz meets Goldilocks, Available at SSRN 2383361 (2014)
[141] Bartz, D., Advances in High-dimensional Covariance Matrix Estimation (2015), Technische Universität: Technische Universität Berlin, (Doctoral thesis)
[142] Burda, Z.; Jurkiewicz, J.; Nowak, M. A.; Papp, G.; Zahed, I., Free Lévy matrices and financial correlations, Phys. A, 343, 694-700 (2004)
[143] Bartz, D.; Müller, K.-R., Covariance Shrinkage for Autocorrelated Data, (Advances in Neural Information Processing Systems (2014)), 1592-1600
[144] Bartz, D.; Hatrick, K.; Hesse, C. W.; Müller, K.-R.; Lemm, S., Directional variance adjustment: Bias reduction in covariance matrices based on factor analysis with an application to portfolio optimization, PLoS One, 8, 7, e67503 (2013)
[145] Marsili, M., Dissecting financial markets: sectors and states, Quant. Finance, 2, 4, 297-302 (2002) · Zbl 1405.91755
[146] Ledoit, O.; Wolf, M., Numerical implementation of the quest function, Tech. Rep. (2016), Department of Economics-University of Zurich
[147] McCullagh, P.; Nelder, J. A., Generalized Linear Models, vol. 37 (1989), CRC press · Zbl 0744.62098
[148] Chamberlain, G.; Rothschild, M., Arbitrage, factor structure, and mean-variance analysis on large asset markets, Econometrica, 51, 5, 1281-1304 (1983) · Zbl 0523.90017
[150] Onatski, A., Determining the number of factors from empirical distribution of eigenvalues, Rev. Econ. Stat., 92, 4, 1004-1016 (2010)
[151] Paul, D.; Silverstein, J. W., No eigenvalues outside the support of the limiting empirical spectral distribution of a separable covariance matrix, J. Multivariate Anal., 100, 1, 37-57 (2009) · Zbl 1154.60320
[152] Merton, R. C., An intertemporal capital asset pricing model, Econometrica, 867-887 (1973) · Zbl 0283.90003
[153] Fama, E. F.; French, K. R., Common risk factors in the returns on stocks and bonds, J. Financ. Econ., 33, 1, 3-56 (1993) · Zbl 1131.91335
[155] Chicheportiche, R.; Bouchaud, J.-P., A nested factor model for non-linear dependencies in stock returns, Quant. Finance, 15, 11, 1-16 (2015) · Zbl 1406.91405
[157] Markowitz, H. M., Portfolio Selection: Efficient Diversification of Investments, vol. 16 (1968), Yale University Press
[158] Tumminello, M.; Lillo, F.; Mantegna, R. N., Kullback-leibler distance as a measure of the information filtered from multivariate data, Phys. Rev. E, 76, 3, Article 031123 pp. (2007) · Zbl 1373.62467
[159] Ledoit, O.; Wolf, M., Improved estimation of the covariance matrix of stock returns with an application to portfolio selection, J. Empir. Finance, 10, 5, 603-621 (2003)
[160] Pantaleo, E.; Tumminello, M.; Lillo, F.; Mantegna, R. N., When do improved covariance matrix estimators enhance portfolio optimization? an empirical comparative study of nine estimators, Quant. Finance, 11, 7, 1067-1080 (2011)
[161] Allez, R.; Bouchaud, J.-P., Eigenvector dynamics: general theory and some applications, Phys. Rev. E, 86, 4, Article 046202 pp. (2012)
[162] Schmitt, T. A.; Chetalova, D.; Schäfer, R.; Guhr, T., Non-stationarity in financial time series: Generic features and tail behavior, Europhys. Lett., 103, 5, 58003 (2013)
[165] Johnstone, I. M., Multivariate analysis and Jacobi ensembles: Largest eigenvalue, Tracy-Widom limits and rates of convergence, Ann. Statist., 36, 6, 2638 (2008) · Zbl 1284.62320
[166] Yang, Y.; Pan, G., Independence test for high dimensional data based on regularized canonical correlation coefficients, Ann. Statist., 43, 2, 467-500 (2015) · Zbl 1344.60027
[167] Klema, V. C.; Laub, A. J., The singular value decomposition: its computation and some applications, IEEE Trans. Automat. Control, 25, 2, 164-176 (1980) · Zbl 0433.93018
[168] Furnas, G. W.; Deerwester, S.; Dumais, S. T.; Landauer, T. K.; Harshman, R. A.; Streeter, L. A.; Lochbaum, K. E., Information retrieval using a singular value decomposition model of latent semantic structure, (Proceedings of the 11th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (1988), ACM), 465-480
[169] Alter, O.; Brown, P. O.; Botstein, D., Singular value decomposition for genome-wide expression data processing and modeling, Proc. Nat. Acad. Sci., 97, 18, 10101-10106 (2000)
[170] Benaych-Georges, F.; Nadakuditi, R. R., The singular values and vectors of low rank perturbations of large rectangular random matrices, J. Multivariate Anal., 111, 120-135 (2012) · Zbl 1252.15039
[171] Tumminello, M.; Lillo, F.; Mantegna, R. N., Correlation, hierarchies, and networks in financial markets, J. Econ. Behav. Organ., 75, 1, 40-58 (2010)
[172] Dimov, I. I.; Kolm, P. N.; Maclin, L.; Shiber, D. Y., Hidden noise structure and random matrix models of stock correlations, Quant. Finance, 12, 4, 567-572 (2012) · Zbl 1278.91187
[173] Bru, M.-F., Wishart processes, J. Theoret. Probab., 4, 4, 725-751 (1991) · Zbl 0737.60067
[174] Bourgade, P.; Yau, H.-T., The eigenvector moment flow and local quantum unique ergodicity, Commun. Math. Phys., 1-48 (2013)
[176] Matytsin, A., On the large-N limit of the Itzykson-Zuber integral, Nuclear Phys. B, 411, 805-820 (1994) · Zbl 1049.81631
[177] Bun, J.; Bouchaud, J. P.; Majumdar, S. N.; Potters, M., Instanton approach to large \(N\) Harish-Chandra-Itzykson-Zuber integrals, Phys. Rev. Lett., 113, Article 070201 pp. (2014)
[178] Guionnet, A.; Maïda, M., A Fourier view on the R-transform and related asymptotics of spherical integrals, J. Funct. Anal., 222, 2, 435-490 (2005) · Zbl 1065.60023
[179] Zuber, J.-B., The large-N limit of matrix integrals over the orthogonal group, J. Phys. A, 41, 38, Article 382001 pp. (2008) · Zbl 1147.82019
[180] Guionnet, A.; Zeitouni, O., Large deviations asymptotics for spherical integrals, J. Funct. Anal., 188, 2, 461-515 (2002) · Zbl 1002.60021
[181] Collins, B.; Guionnet, A.; Maurel-Segala, E., Asymptotics of unitary and orthogonal matrix integrals, Adv. Math., 222, 1, 172-215 (2009) · Zbl 1184.15024
[182] Tanaka, T., Asymptotics of Harish-Chandra-Itzykson-Zuber integrals and free probability theory, (Journal of Physics: Conference Series, vol. 95 (2008), IOP Publishing), Article 012002 pp.
[183] Marinari, E.; Parisi, G.; Ritort, F., Replica field theory for deterministic models. ii. a non-random spin glass with glassy behaviour, J. Phys. A, 27, 23, 7647 (1994) · Zbl 0843.60097
[184] Erdős, L., Universality of Wigner random matrices: a survey of recent results, Russian Math. Surveys, 66, 3, 507 (2011) · Zbl 1230.82032
[185] Beenakker, C. W., Random-matrix theory of quantum transport, Rev. Modern Phys., 69, 3, 731 (1997)
[187] Nandkishore, R.; Huse, D. A., Many-body localization and thermalization in quantum statistical mechanics, Annual Review of Condensed Matter Physics, 6, 1, 15-38 (2015)
[188] Eisert, J.; Friesdorf, M.; Gogolin, C., Quantum many-body systems out of equilibrium, Nat. Phys., 11, 2, 124-130 (2015)
[189] Dyson, F. J., A Brownian-motion model for the eigenvalues of a random matrix, J. Math. Phys., 3, 1191-1198 (1962) · Zbl 0111.32703
[190] Shlyakhtenko, D., Random Gaussian band matrices and freeness with amalgamation, Int. Math. Res. Not., 1996, 20, 1013-1025 (1996) · Zbl 0872.15018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.