×

A kind of infinite-dimensional Novikov algebras and its realizations. (English) Zbl 1359.17003

Summary: We construct a kind of infinite-dimensional Novikov algebras and give its realization by hyperbolic sine functions and hyperbolic cosine functions.

MSC:

17A30 Nonassociative algebras satisfying other identities

References:

[1] Gel’fand, I. M.; Diki, L. A., Asymptotic properties of the resolvent of Sturm-Liouville equations, and the algebra of Korteweg-de Vries equations, Functional Analysis and Its Applications, 30, 77-113 (1975) · Zbl 0334.58007
[2] Gel’fand, I. M.; Diki, L. A., A Lie algebra structure in the formal calculus of variations, Functional Analysis and Its Applications, 10, 16-22 (1976) · Zbl 0347.49023
[3] Gel’fand, I. M.; Dorfman, I. Y., Hamiltonian operators and algebraic structures associated with them, Functional Analysis and Its Applications, 13, 248-262 (1979) · Zbl 0437.58009
[4] Ma, W. X., Some Hamiltonian operators in infinite-dimensional Hamiltonian systems, Acta Mathematicae Applicatae Sinica, 13, 4, 484-496 (1990) · Zbl 0725.58020
[5] Ma, W. X., Complexiton solutions to the Korteweg-de Vries equation, Physics Letters A, 301, 1-2, 35-44 (2002) · Zbl 0997.35066 · doi:10.1016/S0375-9601(02)00971-4
[6] Tu, G. Z.; Ma, W. X., An algebraic approach for extending Hamiltonian operators, Journal of Partial Differential Equations, 5, 1, 43-56 (1992) · Zbl 0751.58016
[7] Zel’manov, E. I., A class of local translation-invariant Lie algebras, Soviet Mathematics—Doklady, 35, 1, 216-218 (1987) · Zbl 0629.17002
[8] Osborn, J. M., Simple Novikov algebras with an idempotent, Communications in Algebra, 20, 9, 2729-2753 (1992) · Zbl 0772.17001 · doi:10.1080/00927879208824486
[9] Osborn, J. M., Infinite-dimensional Novikov algebras of characteristic \(0\), Journal of Algebra, 167, 1, 146-167 (1994) · Zbl 0814.17002 · doi:10.1006/jabr.1994.1181
[10] Xu, X., Hamiltonian operators and associative algebras with a derivation, Letters in Mathematical Physics, 33, 1, 1-6 (1995) · Zbl 0837.16034 · doi:10.1007/BF00750806
[11] Xu, X., On simple Novikov algebras and their irreducible modules, Journal of Algebra, 185, 3, 905-934 (1996) · Zbl 0863.17003 · doi:10.1006/jabr.1996.0356
[12] Xu, X., Novikov-Poisson algebras, Journal of Algebra, 190, 2, 253-279 (1997) · Zbl 0872.17030 · doi:10.1006/jabr.1996.6911
[13] Xu, X., Variational calculus of supervariables and related algebraic structures, Journal of Algebra, 223, 2, 396-437 (2000) · Zbl 1012.37048 · doi:10.1006/jabr.1999.8064
[14] Bai, C.; Meng, D., The realization of non-transitive Novikov algebras, Journal of Physics A, 34, 33, 6435-6442 (2001) · Zbl 1003.17002 · doi:10.1088/0305-4470/34/33/308
[15] Bai, C.; Meng, D., A Lie algebraic approach to Novikov algebras, Journal of Geometry and Physics, 45, 1-2, 218-230 (2003) · Zbl 1033.17001 · doi:10.1016/S0393-0440(02)00150-X
[16] Bai, C.; Meng, D., On the Novikov algebra structures adapted to the automorphism structure of a Lie group, Journal of Geometry and Physics, 45, 1-2, 105-115 (2003) · Zbl 1033.17002 · doi:10.1016/S0393-0440(02)00127-4
[17] Chen, L.; Niu, Y.; Meng, D., Two kinds of Novikov algebras and their realizations, Journal of Pure and Applied Algebra, 212, 4, 902-909 (2008) · Zbl 1136.17002 · doi:10.1016/j.jpaa.2007.07.008
[18] Kang, Y.; Chen, Z., Novikov superalgebras in low dimensions, Journal of Nonlinear Mathematical Physics, 16, 3, 251-257 (2009) · Zbl 1232.17011 · doi:10.1142/S1402925109000212
[19] Zhu, F.; Chen, Z., Novikov superalgebras with \(A_0 = A_1 A_1\), Czechoslovak Mathematical Journal, 60(135), 4, 903-907 (2010) · Zbl 1224.17010 · doi:10.1007/s10587-010-0076-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.