McCarthy, Daniel; Jensen, Shane T. Power-weighted densities for time series data. (English) Zbl 1359.62393 Ann. Appl. Stat. 10, No. 1, 305-334 (2016). Summary: While time series prediction is an important, actively studied problem, the predictive accuracy of time series models is complicated by nonstationarity. We develop a fast and effective approach to allow for nonstationarity in the parameters of a chosen time series model. In our power-weighted density (PWD) approach, observations in the distant past are down-weighted in the likelihood function relative to more recent observations, while still giving the practitioner control over the choice of data model. One of the most popular nonstationary techniques in the academic finance community, rolling window estimation, is a special case of our PWD approach. Our PWD framework is a simpler alternative compared to popular state–space methods that explicitly model the evolution of an underlying state vector. We demonstrate the benefits of our PWD approach in terms of predictive performance compared to both stationary models and alternative nonstationary methods. In a financial application to thirty industry portfolios, our PWD method has a significantly favorable predictive performance and draws a number of substantive conclusions about the evolution of the coefficients and the importance of market factors over time. Cited in 3 Documents MSC: 62M20 Inference from stochastic processes and prediction 62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH) 62P05 Applications of statistics to actuarial sciences and financial mathematics Keywords:time series analysis; power prior; forecasting; finance Software:BayesDA; dlm × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid References: [1] Aiolfi, M. and Timmermann, A. (2006). Persistence in forecasting performance and conditional combination strategies. J. Econometrics 135 31-53. · Zbl 1418.62406 · doi:10.1016/j.jeconom.2005.07.015 [2] Avramov, D. (2002). Stock return predictability and model uncertainty. Journal of Financial Economics 64 423-458. [3] Berry, D. A. and Stangl, D. K. (1996). Bayesian methods in health-related research. In Bayesian Biostatistics. Statistics : A Series of Textbooks and Monographs 15 3-66. Marcel Dekker, New York, NY. [4] Berry, S. M., Carlin, B. P., Lee, J. J. and Muller, P. (2010). Bayesian Adaptive Methods for Clinical Trials 38 . CRC press, Boca Raton. · Zbl 1306.62005 · doi:10.1201/EBK1439825488 [5] Brian, N. (2010). Bayesian analysis using power priors with application to pediatric quality of care. Journal of Biometrics & Biostatistics 1:103 . . [6] Carhart, M. M. (1997). On persistence in mutual fund performance. J. Finance 52 57-82. [7] Carter, C. K. and Kohn, R. (1994). On Gibbs sampling for state space models. Biometrika 81 541-553. · Zbl 0809.62087 · doi:10.1093/biomet/81.3.541 [8] Chen, Y. and Singpurwalla, N. D. (1994). A non-Gaussian Kalman filter model for tracking software reliability. Statist. Sinica 4 535-548. · Zbl 0824.62088 [9] Dangl, T. and Halling, M. (2012). Predictive regressions with time-varying coefficients. Journal of Financial Economics 106 157-181. [10] Dawid, A. P. (1992). Prequential data analysis. In Current Issues in Statistical Inference : Essays in Honor of D. Basu. Institute of Mathematical Statistics Lecture Notes-Monograph Series 17 113-126. IMS, Hayward, CA. · Zbl 0850.62091 · doi:10.1214/lnms/1215458842 [11] Fama, E. F. and French, K. R. (1989). Business conditions and expected returns on stocks and bonds. Journal of Financial Economics 25 23-49. [12] Fama, E. F. and French, K. R. (1993). Common risk factors in the returns on stocks and bonds. Journal of Financial Economics 33 3-56. · Zbl 1131.91335 · doi:10.1016/0304-405X(93)90023-5 [13] Figlewski, S. (1984). Hedging performance and basis risk in stock index futures. J. Finance 39 657-669. [14] Gelfand, A. E. and Dey, D. K. (1994). Bayesian model choice: Asymptotics and exact calculations. J. R. Stat. Soc. Ser. B. Stat. Methodol. 56 501-514. · Zbl 0800.62170 [15] Gelman, A., Carlin, J. B., Stern, H. S. and Rubin, D. B. (2003). Bayesian Data Analysis . CRC press, Boca Raton. · Zbl 1279.62004 [16] Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transaction on Pattern Analysis and Machine Intelligence 6 721-741. · Zbl 0573.62030 · doi:10.1109/TPAMI.1984.4767596 [17] Grunwald, G. K., Raftery, A. E. and Guttorp, P. (1993). Time series of continuous proportions. J. R. Stat. Soc. Ser. B. Stat. Methodol. 55 103-116. · Zbl 0780.62065 [18] Hobbs, B. P., Carlin, B. P., Mandrekar, S. J. and Sargent, D. J. (2011). Hierarchical commensurate and power prior models for adaptive incorporation of historical information in clinical trials. Biometrics 67 1047-1056. · Zbl 1226.62114 · doi:10.1111/j.1541-0420.2011.01564.x [19] Hoeting, J. A., Raftery, A. E. and Madigan, D. (2002). Bayesian variable and transformation selection in linear regression. J. Comput. Graph. Statist. 11 485-507. · doi:10.1198/106186002501 [20] Ibrahim, J. G. and Chen, M.-H. (2000). Power prior distributions for regression models. Statist. Sci. 15 46-60. · doi:10.1214/ss/1009212673 [21] Kass, R. E. and Raftery, A. E. (1995). Bayes factors. J. Amer. Statist. Assoc. 90 773-795. · Zbl 0846.62028 · doi:10.2307/2291091 [22] Lewellen, J. and Nagel, S. (2006). The conditional CAPM does not explain asset-pricing anomalies. Journal of Financial Economics 82 289-314. [23] Madigan, D. and Raftery, A. E. (1994). Model selection and accounting for model uncertainty in graphical models using Occam’s window. J. Amer. Statist. Assoc. 89 1535-1546. · Zbl 0814.62030 · doi:10.2307/2291017 [24] McCarthy, D. and Jensen, S. T. (2015). Supplement to “Power-weighted densities for time series data.” . [25] Paez, M. S. and Gamerman, D. (2013). Hierarchical dynamic models. In The SAGE Handbook of Multilevel Modeling 335-357. SAGE Publications Ltd, London. [26] Petkova, R. and Zhang, L. (2005). Is value riskier than growth? Journal of Financial Economics 78 187-202. [27] Petris, G., Petrone, S. and Campagnoli, P. (2009). Dynamic Linear Models with R . Springer, New York. · Zbl 1176.62088 · doi:10.1007/b135794 [28] Raftery, A. E. and Zheng, Y. (2003). Discussion: Performance of Bayesian model averaging. J. Amer. Statist. Assoc. 98 931-938. [29] Rapach, D. E., Strauss, J. K. and Zhou, G. (2010). Out-of-sample equity premium prediction: Combination forecasts and links to the real economy. Rev. Financ. Stud. 23 821-862. [30] Shephard, N. (1994). Local scale models: State space alternative to integrated GARCH processes. J. Econometrics 60 181-202. · Zbl 0800.62807 · doi:10.1016/0304-4076(94)90043-4 [31] Shiller, R. (2014). Online data. Available at . [32] Smith, J. Q. (1979). A generalization of the Bayesian steady forecasting model. J. R. Stat. Soc. Ser. B. Stat. Methodol. 41 375-387. · Zbl 0432.62068 [33] Smith, J. Q. (1981). The multiparameter steady model. J. R. Stat. Soc. Ser. B. Stat. Methodol. 43 256-260. · Zbl 0471.62097 [34] Stock, J. H. and Watson, M. W. (2004). Combination forecasts of output growth in a seven-country data set. J. Forecast. 23 405-430. [35] Tan, S.-B., Machin, D., Tai, B.-C., Foo, K.-F. and Tan, E.-H. (2002). A Bayesian re-assessment of two Phase II trials of gemcitabine in metastatic nasopharyngeal cancer. Br. J. Cancer 86 843-850. [36] Welch, I. and Goyal, A. (2008). A comprehensive look at the empirical performance of equity premium prediction. Rev. Financ. Stud. 21 1455-1508. [37] West, M. and Harrison, J. (1998). Bayesian forecasting and dynamic models (2nd edn). Journal of the Operational Research Society 49 179-179. [38] Wilmott, P., Howison, S. and Dewynne, J. (1995). The Mathematics of Financial Derivatives : A Student Introduction . Cambridge Univ. Press, Cambridge. · Zbl 0842.90008 · doi:10.1017/CBO9780511812545 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.