Avena, Luca; Franco, Tertuliano; Jara, Milton; Völlering, Florian Symmetric exclusion as a random environment: hydrodynamic limits. (English. French summary) Zbl 1359.82012 Ann. Inst. Henri Poincaré, Probab. Stat. 51, No. 3, 901-916 (2015). The authors study random walks on the one-dimensional integer lattice \(\mathbb{Z}\), where the transition rates vary according to a simple symmetric exclusion process \(\eta_t\) on \(\mathbb{Z}\). More precisely, the random walk jumps to the left with rate \(\alpha\) and to the right with rate \(\beta\) if the same position in \(\eta_t\) is empty; if a particle is sitting on that position of \(\eta_t\), then the transition rates are reversed. This model creates trapping phenomena at the boundary between populated and empty regions of \(\eta_t\). Hence they are dealing with a random walk in a slowly non-uniform mixing dynamic random environment. As the main result, the authors prove a hydrodynamic limit theorem for the exclusion as seen by the walk. Moreover, a differential equation for the macroscopic evolution of the random walk limit is presented. For these purposes, time and space are scaled by \(N\) in time and by \(1/N\) in space, in contrast to the commonly used \(N^2\) and \(1/N\) scaling. Finally, some variants of this model are also treated. Reviewer: Christoph Koutschan (Linz) Cited in 8 Documents MSC: 82C05 Classical dynamic and nonequilibrium statistical mechanics (general) 60K37 Processes in random environments 82B41 Random walks, random surfaces, lattice animals, etc. in equilibrium statistical mechanics 82C41 Dynamics of random walks, random surfaces, lattice animals, etc. in time-dependent statistical mechanics 82C22 Interacting particle systems in time-dependent statistical mechanics Keywords:random walks in random environments; macroscopic speed; hydrodynamic limits; particle systems; exclusion process × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid References: [1] L. Avena, F. den Hollander and F. Redig. Large deviation principle for one-dimensional random walk in dynamic random environment: Attractive spin-flips and simple symmetric exclusion. Markov Process. Related Fields 16 (2010) 139-168. · Zbl 1198.82049 [2] L. Avena, R. dos Santos and F. Völlering. A transient random walk driven by an exclusion process: Regenerations, limit theorems and an Einstein relation. ALEA Lat. Am. J. Probab. Math. Stat. 10 (2) (2013) 693-709. · Zbl 1277.60185 [3] L. Avena and P. Thomann. Continuity and anomalous fluctuations in random walks in dynamic random environments: Numerics, phase diagrams and conjectures. J. Stat. Phys. 147 (2012) 1041-1067. · Zbl 1246.82040 · doi:10.1007/s10955-012-0502-1 [4] F. Comets, N. Gantert and O. Zeitouni. Quenched, annealed and functional large deviations for one-dimensional random walk in random environment. Probab. Theory Related Fields 118 (2000) 65-114. · Zbl 0965.60098 · doi:10.1007/s004400000074 [5] D. Dolgopyat, G. Keller and C. Liverani. Random walk in Markovian environment. Ann. Probab. 36 (2008) 1676-1710. · Zbl 1192.60110 · doi:10.1214/07-AOP369 [6] A. Greven and F. den Hollander. Large deviations for a random walk in random environment. Ann. Probab. 22 (1994) 1381-1428. · Zbl 0820.60054 · doi:10.1214/aop/1176988607 [7] F. Redig and F. Völlering. Random walks in dynamic random environments: A transference principle. Ann. Probab. 41 (2013) 3157-3180. · Zbl 1277.82051 · doi:10.1214/12-AOP819 [8] T. Franco and C. Landim. Hydrodynamic limit of gradient exclusion processes with conductances. Arch. Ration. Mech. Anal. 195 (2010) 409-439. · Zbl 1192.82062 · doi:10.1007/s00205-008-0206-5 [9] M. Z. Guo, G. C. Papanicolau and S. R. S. Varadhan. Nonlinear diffusion limit for a system with nearest neighbor interactions. Comm. Math. Phys. 118 (1988) 31-59. · Zbl 0652.60107 · doi:10.1007/BF01218476 [10] M. Jara, C. Landim and S. Sethuraman. Nonequilibrium fluctuations for a tagged particle in mean-zero one dimensional zero-range processes. Probab. Theory Related Fields 145 (2009) 565-590. · Zbl 1185.60113 · doi:10.1007/s00440-008-0178-2 [11] C. Kipnis and C. Landim. Scaling Limits of Particle Systems. Grundlehren der Mathematischen Wissenschaften 320 . Springer, Berlin, 1999. · Zbl 0927.60002 [12] C. Landim, S. Olla and S. R. S. Varadhan. Asymptotic behavior of a tagged particle in simple exclusion processes. Bol. Soc. Brasil. Mat. 31 (3) (2000) 241-275. · Zbl 1214.82068 · doi:10.1007/s10955-008-9518-y [13] A. S. Sznitman. Lectures on Random Motions in Random Media. Ten Lectures on Random Media. DMV-Lectures 32 . Birkhäuser, Basel, 2002. · Zbl 1075.60128 [14] O. Zeitouni. Random walks in random environments. J. Phys. A: Math. Gen. 39 (2006) 433-464. · Zbl 1108.60085 · doi:10.1088/0305-4470/39/40/R01 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.