×

A database of number fields. (English) Zbl 1360.11121

Summary: We describe an online database of number fields which accompanies this paper. The database centers on complete lists of number fields with prescribed invariants. Our description here focuses on summarizing tables and connections to theoretical issues of current interest.

MSC:

11R32 Galois theory
11R21 Other number fields
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] DOI: 10.1016/j.jnt.2006.05.001 · Zbl 1163.11079 · doi:10.1016/j.jnt.2006.05.001
[2] Jones, Algorithmic number theory (2008)
[3] DOI: 10.1090/S0025-5718-1994-1219705-3 · doi:10.1090/S0025-5718-1994-1219705-3
[4] Roberts, J. Integer Seq. 10 (2007)
[5] DOI: 10.1016/0022-314X(82)90061-0 · Zbl 0478.12005 · doi:10.1016/0022-314X(82)90061-0
[6] DOI: 10.1142/S1793042105000066 · Zbl 1084.11014 · doi:10.1142/S1793042105000066
[7] DOI: 10.5802/jtnb.22 · Zbl 0722.11054 · doi:10.5802/jtnb.22
[8] DOI: 10.1090/S0025-5718-03-01510-2 · Zbl 1113.11061 · doi:10.1090/S0025-5718-03-01510-2
[9] Jones, Number theory (Ottawa, ON, 1996) (1999)
[10] DOI: 10.4171/GGD/127 · Zbl 1239.11126 · doi:10.4171/GGD/127
[11] DOI: 10.1017/S2040618500033463 · Zbl 0080.03003 · doi:10.1017/S2040618500033463
[12] Bosman, LMS J. Comput. Math. 10 pp 1461– (2007) · Zbl 1222.12005 · doi:10.1112/S1461157000001467
[13] Hulek, Global aspects of complex geometry (2006) · Zbl 1099.14001
[14] DOI: 10.1007/s00208-009-0334-8 · Zbl 1170.11041 · doi:10.1007/s00208-009-0334-8
[15] DOI: 10.4007/annals.2010.172.1559 · Zbl 1220.11139 · doi:10.4007/annals.2010.172.1559
[16] DOI: 10.1080/10586458.2010.10390637 · Zbl 1298.11120 · doi:10.1080/10586458.2010.10390637
[17] Bhargava, Int. Math. Res. Not. IMRN 2007 (2007)
[18] DOI: 10.1080/00927878308822884 · Zbl 0518.20003 · doi:10.1080/00927878308822884
[19] DOI: 10.4007/annals.2005.162.1031 · Zbl 1159.11045 · doi:10.4007/annals.2005.162.1031
[20] DOI: 10.1006/jabr.2000.8411 · Zbl 0985.11055 · doi:10.1006/jabr.2000.8411
[21] DOI: 10.1090/S0025-5718-1990-1011438-8 · doi:10.1090/S0025-5718-1990-1011438-8
[22] Voight, Algorithmic number theory (2008) · Zbl 1286.11181
[23] DOI: 10.1090/S0025-5718-04-01632-1 · Zbl 1051.11055 · doi:10.1090/S0025-5718-04-01632-1
[24] Martinet, Number theory days, 1980 (Exeter, 1980) (1982)
[25] DOI: 10.1007/978-3-662-12123-8 · doi:10.1007/978-3-662-12123-8
[26] DOI: 10.1006/jnth.2001.2713 · Zbl 1022.11058 · doi:10.1006/jnth.2001.2713
[27] DOI: 10.1007/978-3-662-04967-9 · doi:10.1007/978-3-662-04967-9
[28] DOI: 10.1112/S1461157000000851 · Zbl 1067.11516 · doi:10.1112/S1461157000000851
[29] DOI: 10.1090/S0025-5718-2011-02511-1 · Zbl 1283.11165 · doi:10.1090/S0025-5718-2011-02511-1
[30] DOI: 10.2140/ant.2014.8.609 · Zbl 1321.11115 · doi:10.2140/ant.2014.8.609
[31] DOI: 10.1016/j.jsc.2005.09.003 · Zbl 1140.11350 · doi:10.1016/j.jsc.2005.09.003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.