×

Cohen-Macaulayness of Rees algebras of diagonal ideals. (English) Zbl 1360.13013

Summary: Given two determinantal rings over a field \(k\), we consider the Rees algebra of the diagonal ideal, the kernel of the multiplication map. The special fiber ring of the diagonal ideal is the homogeneous coordinate ring of the secant variety. When the Rees algebra and the symmetric algebra coincide, we show that the Rees algebra is Cohen-Macaulay.

MSC:

13A30 Associated graded rings of ideals (Rees ring, form ring), analytic spread and related topics
13C40 Linkage, complete intersections and determinantal ideals
14M12 Determinantal varieties
13P10 Gröbner bases; other bases for ideals and modules (e.g., Janet and border bases)
14Q15 Computational aspects of higher-dimensional varieties
05E40 Combinatorial aspects of commutative algebra
13H10 Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.)

Software:

Macaulay2

References:

[1] W. Bruns and J. Herzog, Cohen-Macaulay rings , Cambr. Stud. Adv. Math. 39 , Cambridge University Press, Cambridge, 1993. · Zbl 0788.13005
[2] S.D. Cutkosky and T. Hà, Arithmetic Macaulayfication of projective schemes , J. Pure Appl. Alg. 201 (2005), 49\textendash61. · Zbl 1094.14008 · doi:10.1016/j.jpaa.2004.12.014
[3] J. Eagon and V. Reiner, Resolutions of Stanley-Reisner rings and Alexander duality , J. Pure Appl. Alg. 130 (1998), 165-175. · Zbl 0941.13016 · doi:10.1016/S0022-4049(97)00097-2
[4] D. Eisenbud, Commutative algebra with a view toward algebraic geometry , Grad. Texts Math. 150 , Springer-Verlag, New York, 1995. · Zbl 0819.13001
[5] S. Goto, Y. Nakamura and K. Nishida, Cohen-Macaulay graded rings associated to ideals , Amer. J. Math. 118 (1996), 1197-1213. · Zbl 0878.13002 · doi:10.1353/ajm.1996.0049
[6] D. Grayson and M. Stillman, Macaulay \(2\), A computer algebra system for computing in algebraic geometry and commutative algebra , available through anonymous ftp from http://www.math.uiuc.edu/Macaulay2.
[7] J. Herzog, A. Simis and W. Vasconcelos, On the arithmetic and homology of algebras of linear type , Trans. Amer. Math. Soc. 283 (1984), 661\textendash683. · Zbl 0541.13005 · doi:10.2307/1999153
[8] J. Herzog, A. Simis and W. Vasconcelos, Ideals with sliding depth , Nagoya Math. J. 99 (1985), 159-172.
[9] T. Hà and N. Trung, Asymptotic behavior of arithmetically Cohen-Macaulay blow-ups , Trans. Amer. Math. Soc. 357 (2005), 3655\textendash3672. · Zbl 1077.14062 · doi:10.1090/S0002-9947-05-03758-X
[10] C. Huneke, Strongly Cohen-Macaulay schemes and residual intersections , Trans. Amer. Math. Soc. 277 (1983), 739\textendash763. · Zbl 0514.13011 · doi:10.2307/1999234
[11] M. Johnson and B. Ulrich, Artin-Nagata properties and Cohen-Macaulay associated graded rings , Compos. Math. 103 (1996), 7-29. · Zbl 0866.13001
[12] K-N Lin, Rees algebras of diagonal ideals , J. Comm. Alg. 5 (2013), 359-398. · Zbl 1286.13010 · doi:10.1216/JCA-2013-5-3-359
[13] A. Simis and B. Ulrich, On the ideal of an embedded join , J. Algebra 226 (2000), 1-14. · Zbl 1034.14026 · doi:10.1006/jabr.1999.8091
[14] B. Sturmfels and S. Sullivant, Combinatorial secant varieties , Pure Appl. Math. 2 (2006), 867\textendash891. · Zbl 1107.14045 · doi:10.4310/PAMQ.2006.v2.n3.a12
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.