# zbMATH — the first resource for mathematics

Extension functors of cominimax modules. (English) Zbl 1360.13044
Let $$R$$ be a commutative Noetherian ring with identity and $$I$$ an ideal of $$R$$. Recall that an $$R$$-module $$X$$ is called minimax if it admits a finitely generated submodule $$Y$$ such that the $$R$$-module $$X/Y$$ is Artinian. An $$R$$-module $$M$$ is called $$I$$-cominimax if $$\text{Supp}_RM\subseteq \text{V}(I)$$ and $$\text{Ext}_R^i(R/I,M)$$ is minimax for all $$i\geq 0$$. Finally, an $$R$$-module $$M$$ is called $$I$$-weakly cofinite if $$\text{Supp}_RM\subseteq \text{V}(I)$$ and for each $$i\geq 0$$, any quotient module of $$\text{Ext}_R^i(R/I,M)$$ has finitely many associated primes.
Let $$M$$ be an $$I$$-cominimax $$R$$-module and $$N$$ a finitely generated $$R$$-module. The authors prove that if either $$\dim_RM\leq 1$$, or $$\dim_RN\leq 2$$, then $$\text{Ext}_R^i(N,M)$$ is $$I$$-cominimax for all $$i\geq 0$$. As an application, they show that if $$R$$ is local and $$M$$ is a minimax $$R$$-module such that $$\dim_R(\text{H}_I^i(M))\leq 2$$ for all $$i\geq 0$$ , then $$\text{Ext}_R^j(N,\text{H}_I^i(M))$$ is $$I$$-weakly cofinite for all finitely generated $$R$$-modules $$N$$, and all $$i,j\geq 0$$.

##### MSC:
 13D45 Local cohomology and commutative rings 13E10 Commutative Artinian rings and modules, finite-dimensional algebras 13C05 Structure, classification theorems for modules and ideals in commutative rings
Full Text:
##### References:
 [1] DOI: 10.1016/j.jalgebra.2010.11.016 · Zbl 1227.13010 [2] Abbasi A., Korean Ann. Math. 28 (1) pp 25– (2011) [3] DOI: 10.1007/s10587-014-0104-y · Zbl 1340.13009 [4] Aghapournahr M., Bull. Math. Soc. Sci. Math. Roumanie, Tome 57 (4) pp 347– (2014) [5] DOI: 10.1090/S0002-9939-08-09530-0 · Zbl 1157.13014 [6] DOI: 10.1090/S0002-9939-08-09260-5 · Zbl 1141.13014 [7] DOI: 10.1016/j.jalgebra.2008.12.020 · Zbl 1168.13016 [8] DOI: 10.1090/S0002-9939-2014-11836-3 · Zbl 1286.13017 [9] DOI: 10.1017/CBO9780511629204 [10] DOI: 10.1112/S0024609399006499 · Zbl 1018.13009 [11] DOI: 10.1017/S0305004100071929 · Zbl 0806.13005 [12] DOI: 10.1016/S0022-4049(96)00044-8 · Zbl 0893.13005 [13] DOI: 10.1090/S0002-9939-04-07728-7 · Zbl 1103.13010 [14] DOI: 10.1080/00927870500387945 · Zbl 1097.13021 [15] Grothendieck, A. (1968). Cohomologie locale des faisceaux coherents et theoremes de Lefschetz locaux et globaux (SGA 2), North-Holland, Amsterdam. [16] DOI: 10.1007/BF01404554 · Zbl 0196.24301 [17] DOI: 10.1017/S0305004100070493 · Zbl 0749.13007 [18] DOI: 10.1080/00927879908826816 · Zbl 0940.13013 [19] DOI: 10.4134/BKMS.2011.48.6.1125 · Zbl 1232.13009 [20] DOI: 10.1007/s002290170024 · Zbl 0987.13009 [21] DOI: 10.1016/S0021-8693(02)00151-5 · Zbl 1042.13010 [22] Matsumura H., Commutative Ring Theory (1986) · Zbl 0603.13001 [23] DOI: 10.1017/S0305004100068535 · Zbl 0709.13002 [24] DOI: 10.1016/j.jalgebra.2004.08.037 · Zbl 1093.13012 [25] DOI: 10.1142/S0219498816501474 · Zbl 1346.13037 [26] Saremi H., Turkish J. Math. 35 pp 1– (2011) [27] DOI: 10.1017/S0027763000006371 · Zbl 0899.13018 [28] DOI: 10.1016/0021-8693(86)90125-0 · Zbl 0593.13012 [29] DOI: 10.14492/hokmj/1381517790 · Zbl 0653.13011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.