Groeneboom, Piet; Maathuis, Marloes H.; Wellner, Jon A. Current status data with competing risks: consistency and rates of convergence of the MLE. (English) Zbl 1360.62123 Ann. Stat. 36, No. 3, 1031-1063 (2008). Summary: We study nonparametric estimation of the sub-distribution functions for current status data with competing risks. Our main interest is in the nonparametric maximum likelihood estimator (MLE), and for comparison we also consider a simpler “naive estimator.” Both types of estimators were studied by N. P. Jewell et al. [Biometrika 90, No. 1, 183–197 (2003; Zbl 1034.62034)], but little was known about their large sample properties. We have started to fill this gap, by proving that the estimators are consistent and converge globally and locally at rate \(n^{1/3}\). We also show that this local rate of convergence is optimal in a minimax sense. The proof of the local rate of convergence of the MLE uses new methods, and relies on a rate result for the sum of the MLEs of the sub-distribution functions which holds uniformly on a fixed neighborhood of a point. Our results are used in our paper [Ann. Stat. 36, No. 3, 1064–1089 (2008; Zbl 1216.62047)] to obtain the local limiting distributions of the estimators. Cited in 1 ReviewCited in 25 Documents MSC: 62G05 Nonparametric estimation 62G20 Asymptotic properties of nonparametric inference 62N01 Censored data models Keywords:survival analysis; current status data; competing risks; maximum likelihood; consistency; rate of convergence Citations:Zbl 1034.62034; Zbl 1216.62047 × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Groeneboom, P. (1996). Lectures on inverse problems. Lectures on Probability Theory and Statistics. Ecole d ’ Eté de Probabilités de Saint Flour XXIV-1994. Lecture Notes in Math. 1648 67-164. Springer, Berlin. · Zbl 0907.62042 · doi:10.1007/BFb0095675 [2] Groeneboom, P., Jongbloed, G. and Wellner, J. A. (2001). Estimation of a convex function: Characterizations and asymptotic theory. Ann. Statist. 29 1653-1698. · Zbl 1043.62027 · doi:10.1214/aos/1015345958 [3] Groeneboom, P., Maathuis, M. H. and Wellner, J. A. (2008). Current status data with competing risks: Limiting distribution of the MLE. Ann. Statist. 36 1064-1089. · Zbl 1216.62047 · doi:10.1214/009053607000000983 [4] Groeneboom, P. and Wellner, J. A. (1992). Information Bounds and Nonparametric Maximum Likelihood Estimation . Birkhäuser, Basel. · Zbl 0757.62017 [5] Hudgens, M. G., Satten, G. A. and Longini, Jr., I. M. (2001). Nonparametric maximum likelihood estimation for competing risks survival data subject to interval censoring and truncation. Biometrics 57 74-80. JSTOR: · Zbl 1209.62049 · doi:10.1111/j.0006-341X.2001.00074.x [6] Jewell, N. P. and van der Laan, M. J. (2004). Current status data: Review, recent developments and open problems. In Advances in Survival Analysis. Handbook of Statist. 23 625-642. North-Holland, Amsterdam. [7] Jewell, N. P., van der Laan, M. J. and Henneman, T. (2003). Nonparametric estimation from current status data with competing risks. Biometrika 90 183-197. · Zbl 1034.62034 · doi:10.1093/biomet/90.1.183 [8] Kim, J. and Pollard, D. (1990). Cube root asymptotics. Ann. Statist. 18 191-219. · Zbl 0703.62063 · doi:10.1214/aos/1176347498 [9] Maathuis, M. H. (2005). Reduction algorithm for the MLE for the distribution function of bivariate interval censored data. J. Comput. Graph. Statist. 14 352-362. · doi:10.1198/106186005X48470 [10] Maathuis, M. H. (2006). Nonparametric estimation for current status data with competing risks. Ph.D. thesis, Univ. Washington. Available at http://stat.ethz.ch/ maathuis/papers/. [11] Pfanzagl, J. (1988). Consistency of maximum likelihood estimators for certain nonparametric families, in particular: Mixtures. J. Statist. Plann. Inference 19 137-158. · Zbl 0656.62044 · doi:10.1016/0378-3758(88)90069-9 [12] Rogers, L. C. G. and Williams, D. (1994). Diffusions , Markov Processes , and Martingales . 1 , 2nd ed. Wiley, Chichester. · Zbl 0826.60002 [13] Schick, A. and Yu, Q. (2000). Consistency of the GMLE with mixed case interval-censored data. Scand. J. Statist. 27 45-55. · Zbl 0938.62109 · doi:10.1111/1467-9469.00177 [14] Van de Geer, S. A. (1993). Hellinger-consistency of certain nonparametric maximum likelihood estimators. Ann. Statist. 21 14-44. · Zbl 0779.62033 · doi:10.1214/aos/1176349013 [15] Van de Geer, S. A. (1996). Rates of convergence of the maximum likelihood estimator in mixture models. J. Nonparametr. Statist. 6 293-310. · Zbl 0872.62039 · doi:10.1080/10485259608832677 [16] Van de Geer, S. A. (2000). Applications of Empirical Process Theory . Cambridge Univ. Press. · Zbl 0953.62049 [17] Van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes : With Applications to Statistics . Springer, New York. · Zbl 0862.60002 [18] Van der Vaart, A. W. and Wellner, J. A. (2000). Preservation theorems for Glivenko-Cantelli and uniform Glivenko-Cantelli classes. In High Dimensional Probability II 115-133. Birkhäuser, Boston. · Zbl 0967.60037 [19] Zeidler, E. (1985). Nonlinear Functional Analysis and its Applications III : Variational Methods and Optimization . Springer, New York. · Zbl 0583.47051 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.