Hjort, Nils Lid; Walker, Stephen G. Quantile pyramids for Bayesian nonparametrics. (English) Zbl 1360.62124 Ann. Stat. 37, No. 1, 105-131 (2009). Summary: Pólya trees fix partitions and use random probabilities in order to construct random probability measures. With quantile pyramids we instead fix probabilities and use random partitions. For nonparametric Bayesian inference we use a prior which supports piecewise linear quantile functions, based on the need to work with a finite set of partitions, yet we show that the limiting version of the prior exists. We also discuss and investigate an alternative model based on the so-called substitute likelihood. Both approaches factorize in a convenient way leading to relatively straightforward analysis via MCMC, since analytic summaries of posterior distributions are too complicated. We give conditions securing the existence of an absolute continuous quantile process, and discuss consistency and approximate normality for the sequence of posterior distributions. Illustrations are included. Cited in 19 Documents MSC: 62G05 Nonparametric estimation 62F15 Bayesian inference 62G20 Asymptotic properties of nonparametric inference 60G35 Signal detection and filtering (aspects of stochastic processes) 60G57 Random measures × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid References: [1] Barron, A., Schervish, M. J. and Wasserman, L. (1999). The consistency of posterior distributions in nonparametric problems. Ann. Statist. 27 536-561. · Zbl 0980.62039 · doi:10.1214/aos/1018031206 [2] Bernshteĭn, S. (1917). \?\?\?\?\?\? \?\?\?\?\?\?\?\?\?\?\?\? [ Theory of Probability ]. Gostekihzdat, Moskva. [3] Billingsley, P. (1968). Convergence of Probability Measures . Wiley, New York. · Zbl 0172.21201 [4] De Blasi, P. and Hjort, N. L. (2007). Bayesian survival analysis in proportional hazard models with logistic relative risk. Scand. J. Statist. 34 229-257. · Zbl 1142.62077 · doi:10.1111/j.1467-9469.2006.00543.x [5] Doksum, K. A. (1974). Empirical probability plots and statistical inference for nonlinear models in the two-sample case. Ann. Statist. 2 267-277. · Zbl 0277.62034 · doi:10.1214/aos/1176342662 [6] Doss, H. and Gill, R. D. (1992). An elementary approach to weak convergence for quantile processes, with applications to censored survival data. J. Amer. Statist. Assoc. 87 869-877. JSTOR: · Zbl 0761.60019 · doi:10.2307/2290226 [7] Dubins, L. E. and Freedman, D. A. (1967). Random distribution functions. Proc. 5th Berkeley Symp. Math. Statist. Probab. 2 183-214. Univ. California Press, Berkeley. · Zbl 0201.49502 [8] Dunson, D. B. and Taylor, J. A. (2005). Approximate Bayesian inference for quantiles. J. Nonparametr. Statist. 17 385-400. · Zbl 1061.62051 · doi:10.1080/10485250500039049 [9] Ferguson, T. S. (1974). Prior distributions on spaces of probability measures. Ann. Statist. 2 615-629. · Zbl 0286.62008 · doi:10.1214/aos/1176342752 [10] Freedman, D. A. (1999). On the Bernstein-von Mises theorem with infinite-dimensional parameter. Ann. Statist. 27 1119-1140. · Zbl 0957.62002 [11] Ghosal, S., Ghosh, J. K. and Ramamoorthi, R. V. (1999a). Posterior consistency of Dirichlet mixtures in density estimation. Ann. Statist. 27 143-158. · Zbl 0932.62043 · doi:10.1214/aos/1018031105 [12] Ghosal, S., Ghosh, J. K. and Ramamoorthi, R. V. (1999b). Consistent semiparametric Bayesian inference about a location parameter. J. Statist. Plann. Inference 77 181-193. · Zbl 1054.62528 · doi:10.1016/S0378-3758(98)00192-X [13] Ghosal, S. (2000). Asymptotic normality of posterior distributions for exponential families when the number of parameters tends to infinity. J. Multivariate Anal. 74 49-68. · Zbl 1118.62309 · doi:10.1006/jmva.1999.1874 [14] Hjort, N. L. (2003). Topics in nonparametric Bayesian statistics (with discussion). In Highly Structured Stochastic Systems (P. J. Green, N. L. Hjort and S. Richardson, eds.) 455-487. Oxford Univ. Press. [15] Hjort, N. L. (2007). Model selection for cube root asymptotics. In Report No. 50/2007 from the Mathematisches Forschungsinstitut Oberwolfach , Reassessing the Paradigms of Statistical Model-Building 33-36. [16] Hjort, N. L. and Petrone, S. (2006). Nonparametric quantile inference with the Dirichlet process prior. In Advances in Statistical Modeling and Inference: Festschrift for Kjell Doksum (V. Nair, ed.) 463-492. [17] Jeffreys, H. (1967). Theory of Probability , 3rd ed. Clarendon, Oxford. · Zbl 0171.22502 [18] Kalbfleisch, J. (1978). Likelihood methods and nonparametric testing. J. Amer. Statist. Assoc. 83 167-170. · Zbl 0376.62028 · doi:10.2307/2286539 [19] Kim, Y. and Lee, J. (2004). A Bernstein-von Mises theorem in the nonparametric right-censoring model. Ann. Statist. 32 1492-1512. · Zbl 1047.62043 · doi:10.1214/009053604000000526 [20] Kottas, A. and Gelfand, A. (2001). Bayesian semiparametric median regression modeling. J. Amer. Statist. Assoc. 96 1458-1468. JSTOR: · Zbl 1051.62038 · doi:10.1198/016214501753382363 [21] Kraft, C. H. (1964). A class of distribution function processes which have derivatives. J. Appl. Probab. 1 385-388. JSTOR: · Zbl 0203.19702 · doi:10.2307/3211867 [22] Lavine, M. (1992). Some aspects of Polya tree distributions for statistical modelling. Ann. Statist. 20 1222-1235. · Zbl 0765.62005 · doi:10.1214/aos/1176348767 [23] Lavine, M. (1994). More aspects of Polya tree distributions for statistical modelling. Ann. Statist. 22 1161-1176. · Zbl 0820.62016 · doi:10.1214/aos/1176325623 [24] Lavine, M. (1995). On an approximate likelihood for quantiles. Biometrika 82 220-222. JSTOR: · Zbl 0823.62002 · doi:10.1093/biomet/82.1.220 [25] von Mises, R. (1931). Wahrscheinlichkeitsrechnung . Springer, Berlin. · JFM 57.1499.04 [26] Monahan, J. F. and Boos, D. D. (1992). Proper likelihoods for Bayesian analysis. Biometrika 79 271-278. JSTOR: · Zbl 0751.62012 · doi:10.1093/biomet/79.2.271 [27] Parzen, E. (1979). Nonparametric statistical data modeling (with discussion). J. Amer. Statist. Assoc. 74 105-131. · Zbl 0407.62001 · doi:10.2307/2286734 [28] Parzen, E. (2004). Quantile probability and statistical data modeling. Statist. Sci. 19 652-662. · Zbl 1100.62500 · doi:10.1214/088342304000000387 [29] Shorack, G. R. and Wellner, J. A. (1986). Empirical Processes . Wiley, New York. · Zbl 1170.62365 [30] Tierney, L. (1994). Markov chains for exploring posterior distributions (with discussion). Ann. Statist. 22 1701-1762. · Zbl 0829.62080 · doi:10.1214/aos/1176325750 [31] Walker, S. G., Damien, P., Laud, P. W. and Smith, A. F. M. (1999). Bayesian nonparametric inference for random distributions and related functions (with discussion). J. Roy. Statist. Soc. Ser. B 61 485-528. JSTOR: · Zbl 0983.62027 · doi:10.1111/1467-9868.00190 [32] Walker, S. G. (2003). On sufficient conditions for Bayesian consistency. Biometrika 90 482-488. · Zbl 1034.62024 · doi:10.1093/biomet/90.2.482 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.