×

Optimal rank-based tests for homogeneity of scatter. (English) Zbl 1360.62288

Summary: We propose a class of locally and asymptotically optimal tests, based on multivariate ranks and signs for the homogeneity of scatter matrices in \(m\) elliptical populations. Contrary to the existing parametric procedures, these tests remain valid without any moment assumptions, and thus are perfectly robust against heavy-tailed distributions (validity robustness). Nevertheless, they reach semiparametric efficiency bounds at correctly specified elliptical densities and maintain high powers under all (efficiency robustness). In particular, their normal-score version outperforms traditional Gaussian likelihood ratio tests and their pseudo-Gaussian robustifications under a very broad range of non-Gaussian densities including, for instance, all multivariate Student and power-exponential distributions.

MSC:

62H15 Hypothesis testing in multivariate analysis
62G10 Nonparametric hypothesis testing
62G35 Nonparametric robustness

References:

[1] Anderson, T. W. (2003). An Introduction to Multivariate Statistical Analysis , 3rd ed. Wiley, Hoboken, NJ. · Zbl 1039.62044
[2] Bartlett, M. S. (1937). Properties of sufficiency and statistical tests. Proc. Roy. London Soc. Ser. A 160 268-282. · Zbl 0016.41201 · doi:10.1098/rspa.1937.0109
[3] Bartlett, M. S. and Kendall, D. G. (1946). The statistical analysis of variance-heterogeneity and the logarithmic transformation. Suppl. J. Roy. Statist. Soc. 8 128-138. · Zbl 0063.00230 · doi:10.2307/2983618
[4] Bickel, P. J. (1982). On adaptive estimation. Ann. Statist. 10 647-671. · Zbl 0489.62033 · doi:10.1214/aos/1176345863
[5] Box, G. E. P. (1953). Non-normality and tests on variances. Biometrika 40 318-335. JSTOR: · Zbl 0051.10805 · doi:10.1093/biomet/40.3-4.318
[6] Cochran, W. G. (1941). The distribution of the largest of a set of estimated variances as a fraction of their total. Ann. Eugenics 11 47-52. · Zbl 0063.00936
[7] Conover, W. J., Johnson, M. E. and Johnson, M. M. (1981). Comparative study of tests for homogeneity of variances, with applications to the outer continental shelf bidding data. Technometrics 23 351-361.
[8] Dümbgen, L. (1998). On Tyler’s M -functional of scatter in high dimension. Ann. Inst. Statist. Math. 50 471-491. · Zbl 0912.62061 · doi:10.1023/A:1003573311481
[9] Dümbgen, L. and Tyler, D. E. (2005). On the breakdown properties of some multivariate M -functionals. Scand. J. Statist. 32 247-264. · Zbl 1089.62056 · doi:10.1111/j.1467-9469.2005.00425.x
[10] Fligner, M. A. and Killeen, T. J. (1976). Distribution-free two-sample tests for scale. J. Amer. Statist. Assoc. 71 210-213. · Zbl 0329.62035 · doi:10.2307/2285771
[11] Goodnight, C. J. and Schwartz, J. M. (1997). A bootstrap comparison of genetic covariance matrices. Biometrics 53 1026-1039. · Zbl 0896.62127 · doi:10.2307/2533561
[12] Gupta, A. K. and Xu, J. (2006). On some tests of the covariance matrix under general conditions. Ann. Inst. Statist. Math. 58 101-114. · Zbl 1095.62071 · doi:10.1007/s10463-005-0010-z
[13] Hájek, I. (1968). Asymptotic normality of simple linear rank statistics under alternatives. Ann. Math. Statist. 39 325-346. · Zbl 0187.16401 · doi:10.1214/aoms/1177698394
[14] Hallin, M., Oja, H. and Paindaveine, D. (2006). Semiparametrically efficient rank-based inference for shape. II. Optimal R -estimation of shape. Ann. Statist. 34 2757-2789. · Zbl 1115.62059 · doi:10.1214/009053606000000948
[15] Hallin, M. and Paindaveine, D. (2002). Optimal tests for multivariate location based on interdirections and pseudo-Mahalanobis ranks. Ann. Statist. 30 1103-1133. · Zbl 1101.62348 · doi:10.1214/aos/1031689019
[16] Hallin, M. and Paindaveine, D. (2004). Rank-based optimal tests of the adequacy of an elliptic VARMA model. Ann. Statist. 32 2642-2678. · Zbl 1076.62044 · doi:10.1214/009053604000000724
[17] Hallin, M. and Paindaveine, D. (2006). Semiparametrically efficient rank-based inference for shape. I. Optimal rank-based tests for sphericity. Ann. Statist. 34 2707-2756. · Zbl 1114.62066 · doi:10.1214/009053606000000731
[18] Hallin, M. and Paindaveine, D. (2006). Parametric and semiparametric inference for shape: The role of the scale functional. Statist. Decisions 24 1001-1023. · Zbl 1111.62002 · doi:10.1524/stnd.2006.24.3.327
[19] Hallin, M. and Paindaveine, D. (2007). Optimal tests for homogeneity of covariance, scale, and shape. J. Multivariate Anal. · Zbl 1100.62577 · doi:10.1214/088342304000000602
[20] Hallin, M. and Werker, B. J. M. (2003). Semiparametric efficiency, distribution-freeness, and invariance. Bernoulli 9 137-165. · Zbl 1020.62042 · doi:10.3150/bj/1068129013
[21] Hartley, H. O. (1950). The maximum F -ratio as a shortcut test for heterogeneity of variance. Biometrika 37 308-312. · Zbl 0039.35701
[22] Heritier, S. and Ronchetti, E. (1994). Robust bounded-influence tests in general parametric models. J. Amer. Statist. Assoc. 89 897-904. JSTOR: · Zbl 0804.62037 · doi:10.2307/2290914
[23] Hettmansperger, T. P. and Randles, R. H. (2002). A practical affine equivariant multivariate median. Biometrika 89 851-860. JSTOR: · Zbl 1036.62045 · doi:10.1093/biomet/89.4.851
[24] Jurečková, J. (1969). Asymptotic linearity of a rank statistic in regression parameter. Ann. Math. Statist. 40 1889-1900. · Zbl 0188.51003 · doi:10.1214/aoms/1177697273
[25] Kreiss, J. P. (1987). On adaptive estimation in stationary ARMA processes. Ann. Statist. 15 112-133. · Zbl 0616.62042 · doi:10.1214/aos/1176350256
[26] Le Cam, L. (1986). Asymptotic Methods in Statistical Decision Theory . Springer, New York. · Zbl 0605.62002
[27] Nagao, H. (1973). On some test criteria for covariance matrix. Ann. Statist. 1 700-709. · Zbl 0263.62034 · doi:10.1214/aos/1176342464
[28] Ollila, E., Hettmansperger, T. P. and Oja, H. (2004). Affine equivariant multivariate sign methods. Preprint, Univ. Jyväskylä. · Zbl 1090.62052
[29] Paindaveine, D. (2006). A Chernoff-Savage result for shape. On the non-admissibility of pseudo-Gaussian methods. J. Multivariate Anal. 97 2206-2220. · Zbl 1101.62045 · doi:10.1016/j.jmva.2005.08.005
[30] Paindaveine, D. (2007). A canonical definition of shape. Submitted. · Zbl 1283.62124
[31] Perlman, M. D. (1980). Unbiasedness of the likelihood ratio tests for equality of several covariance matrices and equality of several multivariate normal populations. Ann. Statist. 8 247-263. · Zbl 0427.62029 · doi:10.1214/aos/1176344951
[32] Puri, M. L. and Sen, P. K. (1985). Nonparametric Methods in General Linear Models . Wiley, New York. · Zbl 0569.62024
[33] Randles, R. H. (2000). A simpler, affine-invariant, multivariate, distribution-free sign test. J. Amer. Statist. Assoc. 95 1263-1268. JSTOR: · Zbl 1009.62047 · doi:10.2307/2669766
[34] Salibian-Barrera, M., Van Aelst, S. and Willems, G. (2006). Principal components analysis based on multivariate MM-estimators with fast and robust bootstrap. J. Amer. Statist. Assoc. 101 1198-1211. · Zbl 1120.62319 · doi:10.1198/016214506000000096
[35] Schott, J. R. (2001). Some tests for the equality of covariance matrices. J. Statist. Plann. Inference 94 25-36. · Zbl 0971.62031 · doi:10.1016/S0378-3758(00)00209-3
[36] Taskinen, S., Croux, C., Kankainen, A., Ollila, E. and Oja, H. (2006). Influence functions and efficiencies of the canonical correlation and vector estimates based on scatter and shape matrices. J. Multivariate Anal. 97 359-384. · Zbl 1085.62078 · doi:10.1016/j.jmva.2005.03.005
[37] Tatsuoka, K. S. and Tyler, D. E. (2000). On the uniqueness of S -functionals and M -functionals under nonelliptical distributions. Ann. Statist. 28 1219-1243. · Zbl 1105.62347 · doi:10.1214/aos/1015956714
[38] Tyler, D. E. (1983). Robustness and efficiency properties of scatter matrices. Biometrika 70 411-420. JSTOR: · Zbl 0536.62042 · doi:10.1093/biomet/70.2.411
[39] Tyler, D. E. (1987). A distribution-free M -estimator of multivariate scatter. Ann. Statist. 15 234-251. · Zbl 0628.62053 · doi:10.1214/aos/1176350263
[40] Um, Y. and Randles, R. H. (1998). Nonparametric tests for the multivariate multi-sample location problem. Statist. Sinica 8 801-812. · Zbl 0905.62048
[41] Yanagihara, H., Tonda, T. and Matsumoto, C. (2005). The effects of non-normality on asymptotic distributions of some likelihood ratio criteria for testing covariance structures under normal assumption. J. Multivariate Anal. 96 237-264. · Zbl 1080.62009 · doi:10.1016/j.jmva.2004.10.014
[42] Zhang, J. and Boos, D. D. (1992). Bootstrap critical values for testing homogeneity of covariance matrices. J. Amer. Statist. Assoc. 87 425-429. JSTOR: · Zbl 0781.62084 · doi:10.2307/2290273
[43] Zhu, L. X., Ng, K. W. and Jing, P. (2002). Resampling methods for homogeneity tests of covariance matrices. Statist. Sinica 12 769-783. · Zbl 1005.62047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.