×

zbMATH — the first resource for mathematics

A first class constraint generates not a gauge transformation, but a bad physical change: The case of electromagnetism. (English) Zbl 1360.70030
Summary: In Dirac-Bergmann constrained dynamics, a first-class constraint typically does not alone generate a gauge transformation. By direct calculation it is found that each first-class constraint in Maxwell’s theory generates a change in the electric field \(\overrightarrow{E}\) by an arbitrary gradient, spoiling Gauss’s law. The secondary first-class constraint \(p^i,_i = 0\) still holds, but being a function of derivatives of momenta (mere auxiliary fields), it is not directly about the observable electric field (a function of derivatives of \(A_\mu\)), which couples to charge. Only a special combination of the two first-class constraints, the Anderson-Bergmann-Castellani gauge generator \(G\), leaves \(\overrightarrow{E}\) unchanged. Likewise only that combination leaves the canonical action invariant – an argument independent of observables. If one uses a first-class constraint to generate instead a canonical transformation, one partly strips the canonical coordinates of physical meaning as electromagnetic potentials, vindicating the Anderson-Bergmann Lagrangian orientation of interesting canonical transformations. The need to keep gauge-invariant the relation \(\dot{q}-\frac{\delta H}{\delta p}=-E_i-p^i=0\) supports using the gauge generator and primary Hamiltonian rather than the separate first-class constraints and the extended Hamiltonian.Partly paralleling Pons’s criticism, it is shown that Dirac’s proof that a first-class primary constraint generates a gauge transformation, by comparing evolutions from identical initial data, cancels out and hence fails to detect the alterations made to the initial state. It also neglects the arbitrary coordinates multiplying the secondary constraints inside the canonical Hamiltonian. Thus the gauge-generating property has been ascribed to the primaries alone, not the primary-secondary team \(G\). Hence the Dirac conjecture about secondary first-class constraints as generating gauge transformations rests upon a false presupposition about primary first-class constraints. Clarity about Hamiltonian electromagnetism will be useful for an analogous treatment of GR.

MSC:
70H45 Constrained dynamics, Dirac’s theory of constraints
70S15 Yang-Mills and other gauge theories in mechanics of particles and systems
70S05 Lagrangian formalism and Hamiltonian formalism in mechanics of particles and systems
78A25 Electromagnetic theory, general
81S05 Commutation relations and statistics as related to quantum mechanics (general)
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Rosenfeld, L., Ann. Phys., 397, 113-152, (1930), Translation and commentary by Donald Salisbury, Max Planck Institute for the History of Science Preprint 381, http://www.mpiwg-berlin.mpg.de/en/resources/preprints.html, November 2009
[2] Anderson, James L.; Bergmann, Peter G., Phys. Rev., 83, 1018-1025, (1951)
[3] Dirac, Paul A. M., Lectures on quantum mechanics, (1964), Belfer Graduate School of Science, Yeshiva University Dover reprint, Mineola, New York, 2001
[4] Gotay, Mark J., J. Phys. A: Math. Gen., 16, L141-L145, (1983)
[5] Henneaux, Marc; Teitelboim, Claudio, Quantization of gauge systems, (1992), Princeton University Princeton · Zbl 0838.53053
[6] Pons, Josep M., Stud. Hist. Philos. Modern Phys., 36, 491-518, (2005)
[7] Carlip, S., Rep. Progr. Phys., 64, 885-942, (2001)
[8] Dittrich, B., Gen. Relativity Gravitation, 39, 1891-1927, (2007)
[9] Rothe, Heinz J.; Rothe, Klaus D., Classical and quantum dynamics of constrained Hamiltonian systems, (2010), World Scientific Hackensack, New Jersey · Zbl 1259.70001
[10] Pons, Josep; Salisbury, Donald C.; Shepley, Lawrence C., Phys. Rev. D, 55, 658-668, (1997)
[11] Shepley, Lawrence C.; Pons, Josep M.; Salisbury, Donald C., Turkish J. Phys., 24, 3, 445-452, (2000), Regional Conference on Mathematical Physics IX, 9-14 Aug. 1999, Istanbul, Turkey
[12] Pons, Josep M.; Salisbury, Donald C., Phys. Rev. D, 71, 124012, (2005)
[13] Pons, Josep M.; Shepley, Lawrence C., Phys. Rev. D, 58, 024001, (1998)
[14] Costa, M. E.V.; Girotti, H. O.; Simões, T. J.M., Phys. Rev. D, 32, 405-410, (1985)
[15] Henneaux, Marc, Phys. Lett. B, 238, 299-304, (1990)
[16] Govaerts, Jan, (Hamiltonian Quantisation and Constrained Dynamics, Leuven Notes in Mathematical and Theoretical Physics, vol. 4B, (1991), Leuven University Press Leuven)
[17] Jackson, John David, Classical electrodynamics, (1975), Wiley New York · Zbl 0997.78500
[18] Pons, J. M.; Salisbury, D. C.; Sundermeyer, K. A., J. Phys. Conf. Ser., 222, 012018, (2010), First Mediterranean Conference on Classical and Quantum Gravity (MCCQG 2009); arXiv:1001.2726v2 [gr-qc]
[19] Barbour, Julian; Foster, Brendan; Murchadha, Niall Ó, Classical Quantum Gravity, 19, 3217-3248, (2002)
[20] Castellani, Leonardo, Ann. Physics, 143, 357-371, (1982)
[21] Sugano, Reiji; Saito, Yoshihiko; Kimura, Toshiei, Progr. Theoret. Phys., 76, 283-301, (1986)
[22] Pons, J. M.; Salisbury, D. C.; Shepley, L. C., J. Math. Phys., 41, 5557-5571, (2000)
[23] Anderson, James L., Phys. Rev., 111, 965-966, (1958)
[24] Dirac, Paul A. M., Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 246, 333-343, (1958)
[25] Wipf, Andreas, (Ehlers, Jürgen; Friedrich, Helmut, Canonical Gravity: From Classical to Quantum, (1994), Springer Berlin), 22-58, Proceedings of the 117th WE Heraeus Seminar Held at Bad Honnef, Germany, 13-17 September 1993; hep-th/9312078v3
[26] Anderson, James L., Principles of relativity physics, (1967), Academic New York
[27] Sundermeyer, Kurt, (Constrained Dynamics: With Applications to Yang-Mills Theory, General Relativity, Classical Spin, Dual String Model, Lecture Notes in Physics, vol. 169, (1982), Springer Berlin) · Zbl 0508.58002
[28] Bergvelt, M. J.; de Kerf, E. A., Physica A, 139, 125-148, (1986)
[29] Griffiths, David G., Introduction to electrodynamics, (1989), Prentice Hall Englewood Cliffs, New Jersey
[30] Bergvelt, M. J.; de Kerf, E. A., Physica A, 139, 101-124, (1986)
[31] Gotay, Mark J.; Nester, James M.; Hinds, George, J. Math. Phys., 19, 2388-2399, (1978)
[32] Deriglazov, A. A., J. Math. Phys., 50, 012907, (2009), arXiv:0901.3893 [hep-th]
[33] Faddeev, L. D., Sov. Phys. Usp., 25, 130-142, (1982)
[34] E.S. Fradkin, G.A. Vilkovisky, Quantization of relativistic systems with constraints: Equivalence of canonical and covariant formalisms in quantum theory of gravitational field. Ref.TH 2332.CERN, 1977. http://cds.cern.ch/record/406087/.
[35] Dirac, P. A.M., Canad. J. Math., 3, 1-23, (1951)
[36] Banerjee, R.; Rothe, H. J.; Rothe, K. D., Phys. Lett. B, 479, 429-434, (2000)
[37] Sugano, Reiji; Kagraoka, Yusho; Kimura, Toshiei, Internat. J. Modern Phys., 7, 61-89, (1992)
[38] Sudarshan, E. C.G.; Mukunda, N., Classical dynamics: A modern perspective, (1974), John Wiley & Sons New York · Zbl 0329.70001
[39] Lusanna, Luca, Riv. Nuovo Cimento, 14, 3, 1-75, (1991)
[40] Pitts, J. Brian, Stud. Hist. Philos. Modern Phys., 47, 68-89, (2014)
[41] Isenberg, James; Nester, James, (Held, Alan, General Relativity and Gravitation: One Hundred Years After the Birth of Einstein, vol. 1, (1980), Plenum Press New York), 23-97
[42] Gràcia, X.; Pons, J. M., Ann. Physics, 187, 355-368, (1988)
[43] Sugano, Reiji; Kamo, Hideki, Progr. Theoret. Phys., 67, 1966-1988, (1982)
[44] Gitman, D. M.; Tyutin, I. V., Quantization of fields with constraints, (1990), Springer Berlin · Zbl 1028.83011
[45] Cabo, Alejandro; Louis-Martinez, Domingo, Phys. Rev. D, 42, 2726-2735, (1990)
[46] Sobolev, A. S., Math. Notes, 71, 724-729, (2002), Translated from Matematicheskie Zametki71 pp. 793-797
[47] Rothe, Heinz J.; Rothe, Klaus D., Ann. Physics, 313, 479-496, (2004)
[48] Gitman, D. M.; Tyutin, I. V., Braz. J. Phys., 36, 132-140, (2006)
[49] Banerjee, R.; Rothe, H. J.; Rothe, K. D., Phys. Lett. B, 463, 248-251, (1999)
[50] Chaichian, Masud; Louis-Martinez, Domingo, Phys. Rev. D, 46, 1799-1809, (1992)
[51] Goldstein, Herbert, Classical mechanics, (1980), Addison-Wesley Reading, Mass. · Zbl 0491.70001
[52] Ruegg, Henri; Ruiz-Altaba, Marti, International Journal of Modern Physics A, 19, 3265-3348, (2004)
[53] Banerjee, R.; Barcelos-Neto, Joao, Nuclear Phys. B, 499, 453-478, (1997)
[54] Umezawa, H.; Kamefuchi, S., Nuclear Phys., 23, 399-429, (1961)
[55] Salam, Abdus, Phys. Rev., 127, 331-334, (1962)
[56] Grosse-Knetter, Carsten, Phys. Rev. D, 48, 2854-2864, (1993)
[57] Banerjee, Narayan; Banerjee, Rabin; Ghosh, Subir, Ann. Physics, 241, 237-257, (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.